Combinatorial Acyclicity Models for Potential-based Flows

Potential-based flows constitute a basic model to represent physical behavior in networks. Under natural assumptions, the flow in such networks must be acyclic. The goal of this paper is to exploit this property for the solution of corresponding optimization problems. To this end, we introduce several combinatorial models for acyclic flows, based on binary variables … Read more

Robust Optimal Discrete Arc Sizing for Tree-Shaped Potential Networks

We consider the problem of discrete arc sizing for tree-shaped potential networks with respect to infinitely many demand scenarios. This means that the arc sizes need to be feasible for an infinite set of scenarios. The problem can be seen as a strictly robust counterpart of a single-scenario network design problem, which is shown to … Read more

Algorithmic Results for Potential-Based Flows: Easy and Hard Cases

Potential-based flows are an extension of classical network flows in which the flow on an arc is determined by the difference of the potentials of its incident nodes. Such flows are unique and arise, for example, in energy networks. Two important algorithmic problems are to determine whether there exists a feasible flow and to maximize … Read more