Switching Time Optimization for Binary Quantum Optimal Control

Quantum optimal control is a technique for controlling the evolution of a quantum system and has been applied to a wide range of problems in quantum physics. We study a binary quantum control optimization problem, where control decisions are binary-valued and the problem is solved in diverse quantum algorithms. In this paper, we utilize classical … Read more

Mind the \(\tilde{O}\): asymptotically better, but still impractical, quantum distributed algorithms

\(\) The CONGEST and CONGEST-CLIQUE models have been carefully studied to represent situations where the communication bandwidth between processors in a network is severely limited. Messages of only \( O(log(n)) \) bits of information each may be sent between processors in each round. The quantum versions of these models allow the processors instead to communicate … Read more

Quantum Bridge Analytics II: Network Optimization and Combinatorial Chaining for Asset Exchange

Quantum Bridge Analytics relates to methods and systems for hybrid classical-quantum computing, and is devoted to developing tools for bridging classical and quantum computing to gain the benefits of their alliance in the present and enable enhanced practical application of quantum computing in the future. This is the second of a two-part tutorial that surveys … Read more

A Tutorial on Formulating and Using QUBO Models

The Quadratic Unconstrained Binary Optimization (QUBO) model has gained prominence in recent years with the discovery that it unifies a rich variety of combinatorial optimization problems. By its association with the Ising problem in physics, the QUBO model has emerged as an underpinning of the quantum computing area known as quantum annealing and has become … Read more