Randomized Linear Programming Solves the Discounted Markov Decision Problem In Nearly-Linear (Sometimes Sublinear) Running Time

We propose a randomized linear programming algorithm for approximating the optimal policy of the discounted Markov decision problem. By leveraging the value-policy duality, the algorithm adaptively samples state transitions and makes exponentiated primal-dual updates. We show that it finds an ε-optimal policy using nearly-linear running time in the worst case. For Markov decision processes that … Read more

Randomized Primal-Dual Proximal Block Coordinate Updates

In this paper we propose a randomized primal-dual proximal block coordinate updating framework for a general multi-block convex optimization model with coupled objective function and linear constraints. Assuming mere convexity, we establish its $O(1/t)$ convergence rate in terms of the objective value and feasibility measure. The framework includes several existing algorithms as special cases such … Read more

Relating max-cut problems and binary linear feasibility problems

This paper explores generalizations of the Goemans-Williamson randomization technique. It establishes a simple equivalence of binary linear feasibility problems and max-cut problems and presents an analysis of the semidefinite max-cut relaxation for the case of a single linear equation. Numerical examples for feasible random binary problems indicate that the randomization technique is efficient when the … Read more

A randomized heuristic for scene recognition by graph matching

We propose a new strategy for solving the non-bijective graph matching problem in model-based pattern recognition. The search for the best correspondence between a model and an over-segmented image is formulated as a combinatorial optimization problem, defined by the relational attributed graphs representing the model and the image where recognition has to be performed, together … Read more