A block symmetric Gauss-Seidel decomposition theorem for convex composite quadratic programming and its applications

For a symmetric positive semidefinite linear system of equations $\mathcal{Q} {\bf x} = {\bf b}$, where ${\bf x} = (x_1,\ldots,x_s)$ is partitioned into $s$ blocks, with $s \geq 2$, we show that each cycle of the classical block symmetric Gauss-Seidel (block sGS) method exactly solves the associated quadratic programming (QP) problem but added with an … Read more

Unconditionally energy stable time stepping scheme for Cahn-Morral equation: application to multi-component spinodal decomposition and optimal space tiling

An unconditionally energy stable time stepping scheme is introduced to solve Cahn-Morral-like equations in the present study. It is constructed based on the combination of David Eyre’s time stepping scheme and Schur complement approach. Although the presented method is general and independent to the choice of homogeneous free energy density function term, logarithmic and polynomial … Read more

On the computational complexity of gap-free duals for semidefinite programming

We consider the complexity of gap-free duals in semidefinite programming. Using the theory of homogeneous cones we provide a new representation of Ramana’s gap-free dual and show that the new formulation has a much better complexity than originally proved by Ramana. CitationCOR@L Technical Report, Lehigh UniversityArticleDownload View PDF