Unifying optimal partition approach to sensitivity analysis in conic optimization

We study convex conic optimization problems in which the right-hand side and the cost vectors vary linearly as a function of a scalar parameter. We present a unifying geometric framework that subsumes the concept of the optimal partition in linear programming (LP) and semidefinite programming (SDP) and extends it to conic optimization. Similar to the … Read more

An Interior-Point Perspective on Sensitivity Analysis in Semidefinite Programming

We study the asymptotic behavior of the interior-point bounds arising from the work of Yildirim and Todd on sensitivity analysis in semidefinite programming in comparison with the optimal partition bounds. For perturbations of the right-hand side vector and the cost matrix, we show that the interior-point bounds evaluated on the central path using the Monteiro-Zhang … Read more

An Interior-Point Approach to Sensitivity Analysis in Degenerate Linear Programs

We consider the interior-point approach to sensitivity analysis in linear programming (LP) developed by the authors. We investigate the quality of the interior-point bounds under degeneracy. In the case of a special degeneracy, we show that these bounds have the same nice relationship with the optimal partition bounds as in the nondegenerate case. We prove … Read more