A Proximal-Gradient Method for Constrained Optimization

We present a new algorithm for solving optimization problems with objective functions that are the sum of a smooth function and a (potentially) nonsmooth regularization function, and nonlinear equality constraints. The algorithm may be viewed as an extension of the well-known proximal-gradient method that is applicable when constraints are not present. To account for nonlinear … Read more

Almost-sure convergence of iterates and multipliers in stochastic sequential quadratic optimization

Stochastic sequential quadratic optimization (SQP) methods for solving continuous optimization problems with nonlinear equality constraints have attracted attention recently, such as for solving large-scale data-fitting problems subject to nonconvex constraints. However, for a recently proposed subclass of such methods that is built on the popular stochastic-gradient methodology from the unconstrained setting, convergence guarantees have been … Read more

Sequential Quadratic Optimization for Stochastic Optimization with Deterministic Nonlinear Inequality and Equality Constraints

A sequential quadratic optimization algorithm for minimizing an objective function defined by an expectation subject to nonlinear inequality and equality constraints is proposed, analyzed, and tested. The context of interest is when it is tractable to evaluate constraint function and derivative values in each iteration, but it is intractable to evaluate the objective function or … Read more

An Adaptive Sampling Sequential Quadratic Programming Method for Equality Constrained Stochastic Optimization

This paper presents a methodology for using varying sample sizes in sequential quadratic programming (SQP) methods for solving equality constrained stochastic optimization problems. The first part of the paper deals with the delicate issue of dynamic sample selection in the evaluation of the gradient in conjunction with inexact solutions to the SQP subproblems. Under reasonable … Read more

Worst-Case Complexity of an SQP Method for Nonlinear Equality Constrained Stochastic Optimization

A worst-case complexity bound is proved for a sequential quadratic optimization (commonly known as SQP) algorithm that has been designed for solving optimization problems involving a stochastic objective function and deterministic nonlinear equality constraints. Barring additional terms that arise due to the adaptivity of the monotonically nonincreasing merit parameter sequence, the proved complexity bound is … Read more