The Sharpe predictor for fairness in machine learning

In machine learning (ML) applications, unfair predictions may discriminate against a minority group. Most existing approaches for fair machine learning (FML) treat fairness as a constraint or a penalization term in the optimization of a ML model, which does not lead to the discovery of the complete landscape of the trade-offs among learning accuracy and … Read more

Submodularity in conic quadratic mixed 0-1 optimization

We describe strong convex valid inequalities for conic quadratic mixed 0-1 optimization. These inequalities can be utilized for solving numerous practical nonlinear discrete optimization problems from value-at-risk minimization to queueing system design, from robust interdiction to assortment optimization through appropriate conic quadratic mixed 0-1 relaxations. The inequalities exploit the submodularity of the binary restrictions and … Read more

Robust Profit Opportunities in Risky Financial Portfolios

For risky financial securities with given expected return vector and covariance matrix, we propose the concept of a robust profit opportunity in single and multiple period settings. We show that the problem of finding the “most robust” profit opportunity can be solved as a convex quadratic programming problem, and investigate its relation to the Sharpe … Read more