An Axiomatic Duality Framework for the Theta Body and Related Convex Corners

Lovász theta function and the related theta body of graphs have been in the center of the intersection of four research areas: combinatorial optimization, graph theory, information theory, and semidefinite optimization. In this paper, utilizing a modern convex optimization viewpoint, we provide a set of minimal conditions (axioms) under which certain key, desired properties are … Read more

Bounds on the stability number of a graph via the inverse theta function

In the paper we consider degree, spectral, and semide finite bounds on the stability number of a graph. The bounds are obtained via reformulations and variants of the inverse theta function, a notion recently introduced by the author in a previous work. Article Download View Bounds on the stability number of a graph via the inverse … Read more

The operator $\Psi$ for the Chromatic Number of a Graph

We investigate hierarchies of semidefinite approximations for the chromatic number $\chi(G)$ of a graph $G$. We introduce an operator $\Psi$ mapping any graph parameter $\beta(G)$, nested between the stability number $\alpha(G)$ and $\chi\left( {\ol G} \right)$, to a new graph parameter $\Psi_\beta(G)$, nested between $\alpha (\ol G)$ and $\chi(G)$; $\Psi_\beta(G)$ is polynomial time computable if … Read more

On the Lovász theta-number of almost regular graphs with application to Erdös–Rényi graphs

We consider k-regular graphs with loops, and study the Lovász theta-numbers and Schrijver theta’-numbers of the graphs that result when the loop edges are removed. We show that the theta-number dominates a recent eigenvalue upper bound on the stability number due to Godsil and Newman [C.D. Godsil and M.W. Newman. Eigenvalue bounds for independent sets. … Read more

Copositivity cuts for improving SDP bounds on the clique number

Adding cuts based on copositive matrices, we propose to improve Lovász’ bound on the clique number and its tightening introduced by McEliece, Rodemich, Rumsey, and Schrijver. Candidates for cheap and efficient copositivity cuts of this type are obtained from graphs with known clique number. The cost of previously established semidefinite programming bound hierarchies rapidly increases … Read more

Computing the stability number of a graph via linear and semidefinite programming

We study certain linear and semidefinite programming lifting approximation schemes for computing the stability number of a graph. Our work is based on, and refines De Klerk and Pasechnik’s approach to approximating the stability number via copositive programming (SIAM J. Optim. 12 (2002), 875–892). We provide a closed-form expression for the values computed by the … Read more

Strengthened Semidefinite Bounds for Codes

We give a hierarchy of semidefinite upper bounds for the maximum size $A(n,d)$ of a binary code of word length $n$ and minimum distance at least $d$. At any fixed stage in the hierarchy, the bound can be computed (to an arbitrary precision) in time polynomial in $n$; this is based on a result of … Read more

Solving standard quadratic optimization problems via linear, semidefinite and copositive programming

The problem of minimizing a (non-convex) quadratic function over the simplex (the standard quadratic optimization problem) has an exact convex reformulation as a copositive programming problem. In this paper we show how to approximate the optimal solution by approximating the cone of copositive matrices via systems of linear inequalities, and, more refined, linear matrix inequalities … Read more