CliSAT: a SAT-based exact algorithm for hard maximum clique problems

Given a graph, the maximum clique problem (MCP) asks for determining a complete subgraph with the largest possible number of vertices. We propose a new exact algorithm, called CliSAT, to solve the MCP to proven optimality. This problem is of fundamental importance in graph theory and combinatorial optimization due to its practical relevance for a … Read more

A New Bilevel Optimization Approach for Computing Ramsey Numbers

In this article we address the problem of finding lower bounds for small Ramsey numbers $R(m,n)$ using circulant graphs. Our constructive approach is based on finding feasible colorings of circulant graphs using Integer Programming (IP) techniques. First we show how to model the problem as a Stackelberg game and, using the tools of bilevel optimization, … Read more

Dealing with inequality constraints in large scale semidefinite relaxations for graph coloring and maximum clique problems

Semidefinite programs (SDPs) can be solved in polynomial time by interior point methods. However, when the dimension of the problem gets large, interior point methods become impractical both in terms of computational time and memory requirements. First order methods, such as Alternating Direction Methods of Multipliers (ADMMs), turned out to be suitable algorithms to deal … Read more

A Modified Simplex Partition Algorithm to Test Copositivity

A real symmetric matrix $A$ is copositive if $x^\top Ax\geq 0$ for all $x\geq 0$. As $A$ is copositive if and only if it is copositive on the standard simplex, algorithms to determine copositivity, such as those in Sponsel et al. (J Glob Optim 52:537–551, 2012) and Tanaka and Yoshise (Pac J Optim 11:101–120, 2015) … Read more

LP-based Tractable Subcones of the Semidefinite Plus Nonnegative Cone

The authors in a previous paper devised certain subcones of the semidefinite plus nonnegative cone and showed that satisfaction of the requirements for membership of those subcones can be detected by solving linear optimization problems (LPs) with $O(n)$ variables and $O(n^2)$ constraints. They also devised LP-based algorithms for testing copositivity using the subcones. In this … Read more

An LP-based Algorithm to Test Copositivity

A symmetric matrix is called copositive if it generates a quadratic form taking no negative values over the nonnegative orthant, and the linear optimization problem over the set of copositive matrices is called the copositive programming problem. Recently, many studies have been done on the copositive programming problem (see, for example, \cite{aDUR10, aBOMZE12}). Among others, … Read more

Gap, cosum, and product properties of the $\theta’$ bound on the clique number

In a paper published 1978, McEliece, Rodemich and Rumsey improved Lov\’asz’ bound for the Maximum Clique Problem. This strengthening has become well-known under the name Lov\’asz-Schrijver bound and is usually denoted by $\theta’$. This article now deals with situations where this bound is not exact. To provide instances for which the gap between this bound … Read more

Copositivity cuts for improving SDP bounds on the clique number

Adding cuts based on copositive matrices, we propose to improve Lovász’ bound on the clique number and its tightening introduced by McEliece, Rodemich, Rumsey, and Schrijver. Candidates for cheap and efficient copositivity cuts of this type are obtained from graphs with known clique number. The cost of previously established semidefinite programming bound hierarchies rapidly increases … Read more

Short communication: a larger clique for a DIMACS test

In the DIMACS benchmark suite for the maximum clique problem, the best known solution for test C2000.9 is a 78 nodes clique; optimality is not proved. We present a 79 nodes clique emerged during the testing of a heuristic algorithm. Article Download View Short communication: a larger clique for a DIMACS test

Solving large scale semidefinite programsvia an iterative solver onthe augmented systems

The search directions in an interior-point method for large scale semidefinite programming (SDP) can be computed by applying a Krylov iterative method to either the Schur complement equation (SCE) or the augmented equation. Both methods suffer from slow convergence as interior-point iterates approach optimality. Numerical experiments have shown that diagonally preconditioned conjugate residual method on … Read more