The Adaptive Sampling Gradient Method: Optimizing Smooth Functions with an Inexact Oracle

Consider settings such as stochastic optimization where a smooth objective function $f$ is unknown but can be estimated with an \emph{inexact oracle} such as quasi-Monte Carlo (QMC) or numerical quadrature. The inexact oracle is assumed to yield function estimates having error that decays with increasing oracle effort. For solving such problems, we present the Adaptive … Read more

Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Lojasiewicz Condition

In 1963, Polyak proposed a simple condition that is sufficient to show a global linear convergence rate for gradient descent. This condition is a special case of the Lojasiewicz inequality proposed in the same year, and it does not require strong convexity (or even convexity). In this work, we show that this much-older Polyak-Lojasiewicz (PL) … Read more

On Sampling Rates in Simulation-Based Recursions

We consider the context of “simulation-based recursions,” that is, recursions that involve quantities needing to be estimated using a stochastic simulation. Examples include stochastic adaptations of fixed-point and gradient descent recursions obtained by replacing function and derivative values appearing within the recursion by their Monte Carlo counterparts. The primary motivating settings are Simulation Optimization and … Read more

On the convergence of stochastic bi-level gradient methods

We analyze the convergence of stochastic gradient methods for bi-level optimization problems. We address two specific cases: first when the outer objective function can be expressed as a finite sum of independent terms, and next when both the outer and inner objective functions can be expressed as finite sums of independent terms. We assume Lipschitz … Read more

Random Multi-Constraint Projection: Stochastic Gradient Methods for Convex Optimization with Many Constraints

Consider convex optimization problems subject to a large number of constraints. We focus on stochastic problems in which the objective takes the form of expected values and the feasible set is the intersection of a large number of convex sets. We propose a class of algorithms that perform both stochastic gradient descent and random feasibility … Read more

Stochastic Compositional Gradient Descent: Algorithms for Minimizing Compositions of Expected-Value Functions

Classical stochastic gradient methods are well suited for minimizing expected-value objective functions. However, they do not apply to the minimization of a nonlinear function involving expected values or a composition of two expected-value functions, i.e., problems of the form $\min_x \E_v\[f_v\big(\E_w [g_w(x)]\big) \]$. In order to solve this stochastic composition problem, we propose a class … Read more

Block stochastic gradient iteration for convex and nonconvex optimization

The stochastic gradient (SG) method can minimize an objective function composed of a large number of differentiable functions, or solve a stochastic optimization problem, to a moderate accuracy. The block coordinate descent/update (BCD) method, on the other hand, handles problems with multiple blocks of variables by updating them one at a time; when the blocks … Read more

A Sparsity Preserving Stochastic Gradient Method for Composite Optimization

We propose new stochastic gradient algorithms for solving convex composite optimization problems. In each iteration, our algorithms utilize a stochastic oracle of the gradient of the smooth component in the objective function. Our algorithms are based on a stochastic version of the estimate sequence technique introduced by Nesterov (Introductory Lectures on Convex Optimization: A Basic … Read more