Strict Fejér Monotonicity by Superiorization of Feasibility-Seeking Projection Methods

We consider the superiorization methodology, which can be thought of as lying between feasibility-seeking and constrained minimization. It is not quite trying to solve the full fledged constrained minimization problem; rather, the task is to find a feasible point which is superior (with respect to the objective function value) to one returned by a feasibility-seeking … Read more

Multi-Variate McCormick Relaxations

G. P. McCormick [Math Prog 1976] provides the framework for convex/concave relaxations of factorable functions, via rules for the product of functions and compositions of the form F(f(z)), where F is a univariate function. Herein, the composition theorem is generalized to allow multivariate outer functions F, and theory for the propagation of subgradients is presented. … Read more

Cutting Plane Methods and Subgradient Methods

Interior point methods have proven very successful at solving linear programming problems. When an explicit linear programming formulation is either not available or is too large to employ directly, a column generation approach can be used. Examples of column generation approaches include cutting plane methods for integer programming and decomposition methods for many classes of … Read more

Algorithms for the quasiconvex feasibility problem

We study the behavior of subgradient projection algorithms for the quasiconvex feasibility problem of finding a point x^* in R^n that satisfies the inequalities f_i(x^*) less or equal 0, for all i=1,2,…,m, where all functions are continuous and quasiconvex. We consider the consistent case when the solution set is nonempty. Since the Fenchel-Moreau subdifferential might … Read more