A robust approach to food aid supply chains

One of the great challenges in reaching zero hunger is to secure the availability of sufficient nourishment in the worst of times such as humanitarian emergencies. Food aid operations during a humanitarian emergency are typically subject to a high level of uncertainty. In this paper, we develop a novel robust optimization model for food aid … Read more

Evaluating on-demand warehousing via dynamic facility location models

On-demand warehousing platforms match companies with underutilized warehouse and distribution capabilities with customers who need extra space or distribution services. These new business models have unique advantages, in terms of reduced capacity and commitment granularity, but also have different cost structures compared to traditional ways of obtaining distribution capabilities. This research is the first quantitative … Read more

A Decomposition Heuristic for Mixed-Integer Supply Chain Problems

Mixed-integer supply chain models typically are very large but are also very sparse and can be decomposed into loosely coupled blocks. In this paper, we use general-purpose techniques to obtain a block decomposition of supply chain instances and apply a tailored penalty alternating direction method, which exploits the structural properties of the decomposed instances. We … Read more

Computing robust basestock levels

This paper considers how to optimally set the basestock level for a single buffer when demand is uncertain, in a robust framework. We present a family of algorithms based on decomposition that scale well to problems with hundreds of time periods, and theoretical results on more general models. CitationCORC report TR-2005-09, Columbia University, November 2005ArticleDownload … Read more