A mathematical introduction to SVMs with self-concordant kernel

A derivation of so-called “soft-margin support vector machines with kernel” is presented along with elementary proofs that do not rely on concepts from functional analysis such as Mercer’s theorem or reproducing kernel Hilbert spaces which are frequently cited in this context. The analysis leads to new continuity properties of the kernel functions, in particular a … Read more

Robust support vector machines via conic optimization

We consider the problem of learning support vector machines robust to uncertainty. It has been established in the literature that typical loss functions, including the hinge loss, are sensible to data perturbations and outliers, thus performing poorly in the setting considered. In contrast, using the 0-1 loss or a suitable non-convex approximation results in robust … Read more

Robust and Distributionally Robust Optimization Models for Support Vector Machine

In this paper we present novel data-driven optimization models for Support Vector Machines (SVM), with the aim of linearly separating two sets of points that have non-disjoint convex closures. Traditional classi cation algorithms assume that the training data points are always known exactly. However, real-life data are often subject to noise. To handle such uncertainty, we … Read more