A Reciprocity Between Tree Ensemble Optimization and Multilinear Optimization

In this paper, we establish a polynomial equivalence between tree ensemble optimization and optimization of multilinear functions over the Cartesian product of simplices. We use this insight to derive new formulations for tree ensemble optimization problems and to obtain new convex hull results for multilinear polytopes. A computational experiment on multi-commodity transportation problems with costs … Read more

On the convex hull of convex quadratic optimization problems with indicators

We consider the convex quadratic optimization problem with indicator variables and arbitrary constraints on the indicators. We show that a convex hull description of the associated mixed-integer set in an extended space with a quadratic number of additional variables consists of a single positive semidefinite constraint (explicitly stated) and linear constraints. In particular, convexification of … Read more

Compact extended formulations for low-rank functions with indicator variables

We study the mixed-integer epigraph of a low-rank convex function with non-convex indicator constraints, which are often used to impose logical constraints on the support of the solutions. Extended formulations describing the convex hull of such sets can easily be constructed via disjunctive programming, although a direct application of this method often yields prohibitively large … Read more

Single-neuron convexifications for binarized neural networks

Binarized neural networks are an important class of neural network in deep learning due to their computational efficiency. This paper contributes towards a better understanding of the structure of binarized neural networks, specifically, ideal convex representations of the activation functions used. We describe the convex hull of the graph of the signum activation function associated … Read more

Ideal formulations for constrained convex optimization problems with indicator variables.

Motivated by modern regression applications, in this paper, we study the convexification of a class of convex optimization problems with indicator variables and combinatorial constraints on the indicators. Unlike most of the previous work on convexification of sparse regression problems, we simultaneously consider the nonlinear non-separable objective, indicator variables, and combinatorial constraints. Specifically, we give … Read more

2×2-convexifications for convex quadratic optimization with indicator variables

In this paper, we study the convex quadratic optimization problem with indicator variables. For the bivariate case, we describe the convex hull of the epigraph in the original space of variables, and also give a conic quadratic extended formulation. Then, using the convex hull description for the bivariate case as a building block, we derive … Read more

Sequential Convexification of a Bilinear Set

We present a sequential convexification procedure to derive, in the limit, a set arbitrary close to the convex hull of $\epsilon$-feasible solutions to a general nonconvex continuous bilinear set. Recognizing that bilinear terms can be represented with a finite number nonlinear nonconvex constraints in the lifted matrix space, our procedure performs a sequential convexification with … Read more

On the convexification of constrained quadratic optimization problems with indicator variables

Motivated by modern regression applications, in this paper, we study the convexification of quadratic optimization problems with indicator variables and combinatorial constraints on the indicators. Unlike most of the previous work on convexification of sparse regression problems, we simultaneously consider the nonlinear objective, indicator variables, and combinatorial constraints. We prove that for a separable quadratic … Read more

Outlier detection in time series via mixed-integer conic quadratic optimization

We consider the problem of estimating the true values of a Wiener process given noisy observations corrupted by outliers. The problem considered is closely related to the Trimmed Least Squares estimation problem, a robust estimation procedure well-studied from a statistical standpoint but poorly understood from an optimization perspective. In this paper we show how to … Read more

Quantifying Double McCormick

When using the standard McCormick inequalities twice to convexify trilinear monomials, as is often the practice in modeling and software, there is a choice of which variables to group first. For the important case in which the domain is a nonnegative box, we calculate the volume of the resulting relaxation, as a function of the … Read more