Robust support vector machines via conic optimization

We consider the problem of learning support vector machines robust to uncertainty. It has been established in the literature that typical loss functions, including the hinge loss, are sensible to data perturbations and outliers, thus performing poorly in the setting considered. In contrast, using the 0-1 loss or a suitable non-convex approximation results in robust … Read more

Improved Rank-One-Based Relaxations and Bound Tightening Techniques for the Pooling Problem

The pooling problem is a classical NP-hard problem in the chemical process and petroleum industries. This problem is modeled as a nonlinear, nonconvex network flow problem in which raw materials with different specifications are blended in some intermediate tanks, and mixed again to obtain the final products with desired specifications. The analysis of the pooling … Read more

Outlier detection in regression: conic quadratic formulations

In many applications, when building linear regression models, it is important to account for the presence of outliers, i.e., corrupted input data points. Such problems can be formulated as mixed-integer optimization problems involving cubic terms, each given by the product of a binary variable and a quadratic term of the continuous variables. Existing approaches in … Read more

A Reciprocity Between Tree Ensemble Optimization and Multilinear Optimization

In this paper, we establish a polynomial equivalence between tree ensemble optimization and optimization of multilinear functions over the Cartesian product of simplices. We use this insight to derive new formulations for tree ensemble optimization problems and to obtain new convex hull results for multilinear polytopes. A computational experiment on multi-commodity transportation problems with costs … Read more

On the convex hull of convex quadratic optimization problems with indicators

We consider the convex quadratic optimization problem with indicator variables and arbitrary constraints on the indicators. We show that a convex hull description of the associated mixed-integer set in an extended space with a quadratic number of additional variables consists of a single positive semidefinite constraint (explicitly stated) and linear constraints. In particular, convexification of … Read more

Compact extended formulations for low-rank functions with indicator variables

We study the mixed-integer epigraph of a special class of convex functions with non-convex indicator constraints, which are often used to impose logical constraints on the support of the solutions. The class of functions we consider are defined as compositions of low-dimensional nonlinear functions with affine functions Extended formulations describing the convex hull of such … Read more

Single-neuron convexifications for binarized neural networks

Binarized neural networks are an important class of neural network in deep learning due to their computational efficiency. This paper contributes towards a better understanding of the structure of binarized neural networks, specifically, ideal convex representations of the activation functions used. We describe the convex hull of the graph of the signum activation function associated … Read more

Ideal formulations for constrained convex optimization problems with indicator variables.

Motivated by modern regression applications, in this paper, we study the convexification of a class of convex optimization problems with indicator variables and combinatorial constraints on the indicators. Unlike most of the previous work on convexification of sparse regression problems, we simultaneously consider the nonlinear non-separable objective, indicator variables, and combinatorial constraints. Specifically, we give … Read more

2×2-convexifications for convex quadratic optimization with indicator variables

In this paper, we study the convex quadratic optimization problem with indicator variables. For the bivariate case, we describe the convex hull of the epigraph in the original space of variables, and also give a conic quadratic extended formulation. Then, using the convex hull description for the bivariate case as a building block, we derive … Read more

Sequential Convexification of a Bilinear Set

We present a sequential convexification procedure to derive, in the limit, a set arbitrary close to the convex hull of $\epsilon$-feasible solutions to a general nonconvex continuous bilinear set. Recognizing that bilinear terms can be represented with a finite number nonlinear nonconvex constraints in the lifted matrix space, our procedure performs a sequential convexification with … Read more