Risk aversion in multistage stochastic programming: a modeling and algorithmic perspective

We discuss the incorporation of risk measures into multistage stochastic programs. While much attention has been recently devoted in the literature to this type of model, it appears that there is no consensus on the best way to accomplish that goal. In this paper, we discuss pros and cons of some of the existing approaches. … Read more

Chance-constrained problems and rare events: an importance sampling approach

We study chance-constrained problems in which the constraints involve the probability of a rare event. We discuss the relevance of such problems and show that the existing sampling-based algorithms cannot be applied directly in this case, since they require an impractical number of samples to yield reasonable solutions. Using a Sample Average Approximation (SAA) approach … Read more

The optimal harvesting problem under risk aversion

We study the exploitation of a one species forest plantation when timber price is uncertain. The work focuses on providing optimality conditions for the optimal harvesting policy in terms of the parameters of the price process and the discount factor. We use risk averse stochastic dynamic programming and use the Conditional Value-at-Risk (CVaR) as our … Read more

The optimal harvesting problem with price uncertainty

In this paper we study the exploitation of a one species forest plantation when timber price is governed by a stochastic process. The work focuses on providing closed expressions for the optimal harvesting policy in terms of the parameters of the price process and the discount factor. We assume that harvest is restricted to mature … Read more

Computational study of a chance constrained portfolio selection problem

We study approximations of chance constrained problems. In particular, we consider the Sample Average Approximation (SAA) approach and discuss convergence properties of the resulting problem. A method for constructing bounds for the optimal value of the considered problem is discussed and we suggest how one should tune the underlying parameters to obtain a good approximation … Read more