Accelerated Symmetric ADMM and Its Applications in Signal Processing

The alternating direction method of multipliers (ADMM) were extensively investigated in the past decades for solving separable convex optimization problems. Fewer researchers focused on exploring its convergence properties for the nonconvex case although it performed surprisingly efficient. In this paper, we propose a symmetric ADMM based on different acceleration techniques for a family of potentially … Read more

Optimal linearized symmetric ADMM for separable convex programming

Due to its wide applications and simple implementations, the Alternating Direction Method of Multipliers (ADMM) has been extensively investigated by researchers from different areas. In this paper, we focus on a linearized symmetric ADMM (LSADMM) for solving the multi- block separable convex minimization model. This LSADMM partitions the data into two group variables and updates … Read more

A projection algorithm based on KKT conditions for convex quadratic semidefinite programming with nonnegative constraints

The dual form of convex quadratic semidefinite programming (CQSDP) problem, with nonnegative constraints, is a 4-block separable convex optimization problem. It is known that,the directly extended 4-block alternating direction method of multipliers (ADMM4d) is very efficient to solve the dual, but its convergence is not guaranteed. In this paper, we reformulate the dual as a … Read more

A One-Parameter Family of Middle Proximal ADMM for Constrained Separable Convex Optimization

This work is devoted to studying a family of Middle Proximal Alternating Direction Method of Multipliers (MP-ADM) for solving multi-block constrained separable convex optimization. Such one-parameter family of MP-ADM combines both Jacobian and Gauss-Seidel types of alternating direction method, and proximal point techniques are only applied to the middle subproblems to promote the convergence. We … Read more

Several variants of the primal-dual hybrid gradient algorithm with applications

By reviewing the primal-dual hybrid algorithm (PDHA) proposed by He, You and Yuan (SIAM J. Imaging Sci. 2014;7(4):2526-2537), in this paper we introduce four improved schemes for solving a class of generalized saddle-point problems. By making use of the variational inequality, weaker conditions are presented to ensure the global convergence of the proposed algorithms, where … Read more

General parameterized proximal point algorithm with applications in the statistical learning

In the literature, there are a few researches for the proximal point algorithm (PPA) with some parameters in the proximal matrix, especially for the multi-objective optimization problems. Introducing some parameters to the PPA will make it more attractive and flexible. By using the unified framework of the classical PPA and constructing a parameterized proximal matrix, … Read more

A Parameterized Proximal Point Algorithm for Separable Convex Optimization

In this paper, we develop a Parameterized Proximal Point Algorithm (P-PPA) for solving a class of separable convex programming problems subject to linear and convex constraints. The proposed algorithm is provable to be globally convergent with a worst-case $O(1/t)$ convergence rate, where $t$ is the iteration number. By properly choosing the algorithm parameters, numerical experiments … Read more

Generalized Symmetric ADMM for Separable Convex Optimization

The Alternating Direction Method of Multipliers (ADMM) has been proved to be effective for solving separable convex optimization subject to linear constraints. In this paper, we propose a Generalized Symmetric ADMM (GS-ADMM), which updates the Lagrange multiplier twice with suitable stepsizes, to solve the multi-block separable convex programming. This GS-ADMM partitions the data into two … Read more