A generalized asymmetric forward-backward-adjoint algorithm for convex-concave saddle-point problem

The convex-concave minimax problem, known as the saddle-point problem, has been extensively studied from various aspects including the algorithm design, convergence condition and complexity. In this paper, we propose a generalized asymmetric forward-backward-adjoint (G-AFBA) algorithm to solve such a problem by utilizing both the proximal techniques and the interactive information of primal-dual updates. Except enjoying … Read more

An Inexact Proximal-indefinite Stochastic ADMM with applications in 3D CT reconstruction

In this paper, we develop an Inexact Proximal-indefinite Stochastic ADMM (abbreviated as IPS-ADMM) for solving a class of separable convex optimization problems whose objective functions consist of two parts: one is an average of many smooth convex functions and another is a convex but possibly nonsmooth function. The involved smooth subproblem is tackled by an … Read more

A family of accelerated inexact augmented Lagrangian methods with applications to image restoration

In this paper, we focus on a class of convex optimization problems subject to equality or inequality constraints and have developed an Accelerated Inexact Augmented Lagrangian Method (AI-ALM). Different relative error criteria are designed to solve the subproblem of AI-ALM inexactly, and the popular used relaxation step is exploited to accelerate the convergence. By a … Read more

An inexact ADMM with proximal-indefinite term and larger stepsize

In this paper, an inexact Alternating Direction Method of Multipliers (ADMM) has been proposed for solving the two-block separable convex optimization problem subject to linear equality constraints. The first resulting subproblem is solved inexactly under relative error criterion, while another subproblem called regularization problem is solved inexactly by introducing an indefinite proximal term. Meanwhile, the … Read more

A New Insight on Augmented Lagrangian Method with Applications in Machine Learning

By exploiting double-penalty terms for the primal subproblem, we develop a novel relaxed augmented Lagrangian method for solving a family of convex optimization problems subject to equality or inequality constraints. This new method is then extended to solve a general multi-block separable convex optimization problem, and two related primal-dual hybrid gradient algorithms are also discussed. … Read more

Accelerated Stochastic Peaceman-Rachford Method for Empirical Risk Minimization

This work is devoted to studying an Accelerated Stochastic Peaceman-Rachford Splitting Method (AS-PRSM) for solving a family of structural empirical risk minimization problems. The objective function to be optimized is the sum of a possibly nonsmooth convex function and a finite-sum of smooth convex component functions. The smooth subproblem in AS-PRSM is solved by a stochastic gradient method using variance reduction … Read more

Iteration complexity analysis of a partial LQP-based alternating direction method of multipliers

In this paper, we consider a prototypical convex optimization problem with multi-block variables and separable structures. By adding the Logarithmic Quadratic Proximal (LQP) regularizer with suitable proximal parameter to each of the first grouped subproblems, we develop a partial LQP-based Alternating Direction Method of Multipliers (ADMM-LQP). The dual variable is updated twice with relatively larger … Read more

A family of multi-parameterized proximal point algorithms

In this paper, a multi-parameterized proximal point algorithm combining with a relaxation step is developed for solving convex minimization problem subject to linear constraints. We show its global convergence and sublinear convergence rate from the prospective of variational inequality. Preliminary numerical experiments on testing a sparse minimization problem from signal processing indicate that the proposed … Read more

Accelerated Symmetric ADMM and Its Applications in Signal Processing

The alternating direction method of multipliers (ADMM) were extensively investigated in the past decades for solving separable convex optimization problems. Fewer researchers focused on exploring its convergence properties for the nonconvex case although it performed surprisingly efficient. In this paper, we propose a symmetric ADMM based on different acceleration techniques for a family of potentially … Read more

Optimal linearized symmetric ADMM for separable convex programming

Due to its wide applications and simple implementations, the Alternating Direction Method of Multipliers (ADMM) has been extensively investigated by researchers from different areas. In this paper, we focus on a linearized symmetric ADMM (LSADMM) for solving the multi- block separable convex minimization model. This LSADMM partitions the data into two group variables and updates … Read more