Extending the Scope of Robust Quadratic Optimization

We derive computationally tractable formulations of the robust counterparts of convex quadratic and conic quadratic constraints that are concave in matrix-valued uncertain parameters. We do this for a broad range of uncertainty sets. In particular, we show how to reformulate the support functions of uncertainty sets represented in terms of matrix norms and cones. Our … Read more

Bridging the gap between predictive and prescriptive analytics – new optimization methodology needed

Business analytics is becoming more and more important nowadays. Up to now predictive analytics appears to be much more applied in practice than prescriptive analytics. We argue that although optimization is used to obtain predictive models, and predictive tools are used to forecast parameters in optimization models, still the deep relation between the predictive and … Read more

Efficient methods for several classes of ambiguous stochastic programming problems under mean-MAD information

We consider decision making problems under uncertainty, assuming that only partial distributional information is available – as is often the case in practice. In such problems, the goal is to determine here-and-now decisions, which optimally balance deterministic immediate costs and worst-case expected future costs. These problems are challenging, since the worst-case distribution needs to be … Read more

Adjustable robust strategies for flood protection

Flood protection is of major importance to many flood-prone regions and involves substantial investment and maintenance costs. Modern flood risk management requires often to determine a cost-efficient protection strategy, i.e., one with lowest possible long run cost and satisfying flood protection standards imposed by the regulator throughout the entire planning horizon. There are two challenges … Read more

A universal and structured way to derive dual optimization problem formulations

The dual problem of a convex optimization problem can be obtained in a relatively simple and structural way by using a well-known result in convex analysis, namely Fenchel’s duality theorem. This alternative way of forming a strong dual problem is the subject in this paper. We recall some standard results from convex analysis and then … Read more

Adjustable Robust Optimization via Fourier-Motzkin Elimination

We demonstrate how adjustable robust optimization (ARO) problems with fixed recourse can be casted as static robust optimization problems via Fourier-Motzkin elimination (FME). Through the lens of FME, we characterize the structures of the optimal decision rules for a broader class of ARO problems. A scheme based on a blending of classical FME and a … Read more

Robust optimization of dose-volume metrics for prostate HDR-brachytherapy incorporating target- and OAR volume delineation uncertainties

In radiation therapy planning, uncertainties in target volume definition yield a risk of underdosing the tumor. The classical way to prevent this in the context of external beam radiotherapy (EBRT) has been to expand the clinical target volume (CTV) with an isotropic margin to obtain the planning target volume (PTV). However, the EBRT-based PTV concept … Read more

The impact of the existence of multiple adjustable robust solutions

In this note we show that multiple solutions exist for the production-inventory example in the seminal paper on adjustable robust optimization in [2]. All these optimal robust solutions have the same worst-case objective value, but the mean objective values differ up to 21.9% and for individual realizations this difference can be up to 59.4%. We … Read more

Robust Dual Response Optimization

This article presents a robust optimization reformulation of the dual response problem developed in response surface methodology. The dual response approach fits separate models for the mean and the variance, and analyzes these two models in a mathematical optimization setting. We use metamodels estimated from experiments with both controllable and environmental inputs. These experiments may … Read more

When are static and adjustable robust optimization with constraint-wise uncertainty equivalent?

Adjustable Robust Optimization (ARO) yields, in general, better worst-case solutions than static Robust Optimization (RO). However, ARO is computationally more difficult than RO. In this paper, we derive conditions under which the worst-case objective values of ARO and RO problems are equal. We prove that if the uncertainty is constraint-wise and the adjustable variables lie … Read more