## Subgradient methods near active manifolds: saddle point avoidance, local convergence, and asymptotic normality

Nonsmooth optimization problems arising in practice, whether in signal processing, statistical estimation, or modern machine learning, tend to exhibit beneficial smooth substructure: their domains stratify into “active manifolds” of smooth variation, which common proximal algorithms “identify” in finite time. Identification then entails a transition to smooth dynamics, and permits the use of second-order information for … Read more