Optimal Control of Plug-In Hybrid Electric Vehicles with Market Impact and Risk Attitude

In this paper, we develop optimal electricity storage control policies to manage charging and discharging activities for plug-in hybrid electric vehicles for the benefit of an energy market participant. We first develop models for both risk-neutral and risk-averse aggregators to participate only in a real-time market. The proposed models capture the impact of the charging … Read more

Data-Driven Chance Constrained Stochastic Program

Chance constrained programming is an effective and convenient approach to control risk in decision making under uncertainty. However, due to unknown probability distributions of random parameters, the solution obtained from a chance constrained optimization problem can be biased. In addition, instead of knowing the true distributions of random parameters, in practice, only a series of … Read more

Data-driven Chance Constrained Stochastic Program

Chance constrained programming is an effective and convenient approach to control risk in decision making under uncertainty. However, due to unknown probability distributions of random parameters, the solution obtained from a chance constrained optimization problem can be biased. In practice, instead of knowing the true distribution of a random parameter, only a series of historical … Read more

Two-Stage Robust Power Grid Optimization Problem

Under the deregulated energy market environment, plus the integration of renewable energy generation, both the supply and demand of a power grid system are volatile and under uncertainty. Accordingly, a large amount of spinning reserve is required at each bus to maintain the reliability of the power grid system in the traditional approach. In this … Read more

Two-Stage Robust Unit Commitment Problem

As an energy market transforms from a regulated market to a deregulated one, the demands for a power plant are highly uncertain. In this paper, we study a two-stage robust optimization formulation and provide a tractable solution approach for the problem. The computational experiments show the effectiveness of our approach. ArticleDownload View PDF

Algorithms for stochastic lot-sizing problems with backlogging

As a traditional model in the operations research and management science domain, lot-sizing problem is embedded in many application problems such as production and inventory planning and has been consistently drawing attentions from researchers. There is significant research progress on polynomial time algorithm developments for deterministic uncapacitated lot-sizing problems based on Wagner-and-Whitin property. However, in … Read more

Cutting planes for multi-stage stochastic integer programs

This paper addresses the problem of finding cutting planes for multi-stage stochastic integer programs. We give a general method for generating cutting planes for multi-stage stochastic integer programs based on combining inequalities that are valid for the individual scenarios. We apply the method to generate cuts for a stochastic version of a dynamic knapsack problem … Read more

Sequential pairing of mixed integer inequalities

We present a scheme for generating new valid inequalities for mixed integer programs by taking pair-wise combinations of existing valid inequalities. Our scheme is related to mixed integer rounding and mixing. The scheme is in general sequence-dependent and therefore leads to an exponential number of inequalities. For some important cases, we identify combination sequences that … Read more

A Branch-and-Cut Algorithm for the Stochastic Uncapacitated Lot-Sizing Problem

This paper addresses a multi-stage stochastic integer programming formulation of the uncapacitated lot-sizing problem under uncertainty. We show that the classical (l,S) inequalities for the deterministic lot-sizing polytope are also valid for the stochastic lot-sizing polytope. We then extend the (l,S) inequalities to a general class of valid inequalities, called the (Q,S_Q) inequalities, and we … Read more

The Inverse Optimal Value Problem

This paper considers the following inverse optimization problem: given a linear program, a desired optimal objective value, and a set of feasible cost coefficients, determine a cost-coefficient vector such that the corresponding optimal objective value of the linear program is closest to the given value. The above problem, referred here as the inverse optimal value … Read more