A Derivation of Nesterov’s Accelerated Gradient Algorithm from Optimal Control Theory

Nesterov’s accelerated gradient algorithm is derived from first principles. The first principles are founded on the recently-developed optimal control theory for optimization. The necessary conditions for optimal control generate a controllable dynamical system for accelerated optimization. Stabilizing this system via a control Lyapunov function generates an ordinary differential equation. An Euler discretization of the differential … Read more

Enhancements to the DIDO© Optimal Control Toolbox

In 2020, DIDO© turned 20! The software package emerged in 2001 as a basic, user-friendly MATLAB teaching tool to illustrate the various nuances of Pontryagin’s Principle but quickly rose to prominence in 2007 after NASA announced it had executed a globally optimal maneuver using DIDO. Since then, the toolbox has grown in applications well beyond … Read more

An optimal control theory for accelerated optimization

Accelerated optimization algorithms can be generated using a double-integrator model for the search dynamics imbedded in an optimal control problem. CitationunpublishedArticleDownload View PDF

Path Constraints in Tychastic and Unscented Optimal Control: Theory, Applications and Experimental Results

In recent papers, we have shown that a Lebesgue-Stieltjes optimal control theory forms the foundations for unscented optimal control. In this paper, we further our results by incorporating uncertain mixed state-control constraints in the problem formulation. We show that the integrated Hamiltonian minimization condition resembles a semi-infinite type mathematical programming problem. The resulting computational difficulties … Read more