Dynamic Rebalancing Optimization for Bike-sharing Systems: A Modeling Framework and Empirical Comparison

Bike-sharing systems have been implemented in multiple major cities, offering a low-cost and environmentally friendly transportation alternative to vehicles. Due to the stochastic nature of customer trips, stations are often unbalanced, resulting in unsatisfied demand. As a remedy, operators employ trucks to rebalance bikes among unbalanced stations. Given the complexity of the dynamic rebalancing planning, … Read more

COIL: A Deep Architecture for Column Generation

Column generation is a popular method to solve large-scale linear programs with an exponential number of variables. Several important applications, such as the vehicle routing problem, rely on this technique in order to be solved. However, in practice, column generation methods suffer from slow convergence (i.e. they require too many iterations). Stabilization techniques, which carefully … Read more

Mitigating Choice Model Ambiguity: A General Framework and its Application to Assortment Optimization

In several application domains, discrete choice models have become a popular tool to accurately predict complex choice behavior within the classical predict-then-optimize paradigm. Due to a variety of possible error sources, however, estimated choice models may be subject to ambiguity, which may induce different optimal decisions of highly varying quality. While previous studies focused on … Read more

Partially-Ranked Choice Models for Data-Driven Assortment Optimization

The assortment of products carried by a store has a crucial impact on its success. However, finding the right mix of products to attract a large portion of the customers is a challenging task. Several mathematical models have been proposed to optimize assortments. In particular, rank-based choice models have been acknowledged for representing well high-dimensional … Read more

Satisficing Models under Uncertainty

Satisficing, as an approach to decision-making under uncertainty, aims at achieving solutions that satisfy the problem’s constraints as well as possible. Mathematical optimization problems that are related to this form of decision-making include the P-model of Charnes and Cooper (1963). In this paper, we propose a general framework of satisficing decision criteria, and show a … Read more