An oracle-based projection and rescaling algorithm for linear semi-infinite feasibility problems and its application to SDP and SOCP

We point out that Chubanov’s oracle-based algorithm for linear programming [5] can be applied almost as it is to linear semi-infinite programming (LSIP). In this note, we describe the details and prove the polynomial complexity of the algorithm based on the real computation model proposed by Blum, Shub and Smale (the BSS model) which is … Read more

Approximation algorithms for the covering-type k-violation linear program

We study the covering-type k-violation linear program where at most $k$ of the constraints can be violated. This problem is formulated as a mixed integer program and known to be strongly NP-hard. In this paper, we present a simple (k+1)-approximation algorithm using a natural LP relaxation. We also show that the integrality gap of the … Read more

An improved approximation algorithm for the covering 0-1 integer program

We present an improved approximation algorithm for the covering 0-1 integer program (CIP), a well-known problem as a natural generalization of the set cover problem. Our algorithm uses a primal-dual algorithm for CIP by Fujito (2004) as a subroutine and achieves an approximation ratio of (f- (f-1)/m) when m is greater than or equal to … Read more

An approximation algorithm for the partial covering 0-1 integer program

The partial covering 0-1 integer program (PCIP) is a relaxed problem of the covering 0-1 integer program (CIP) such that some fixed number of constraints may not be satisfied. This type of relaxation is also discussed in the partial set multi-cover problem (PSMCP) and the partial set cover problem (PSCP). In this paper, we propose … Read more

An extension of Chubanov’s algorithm to symmetric cones

In this work we present an extension of Chubanov’s algorithm to the case of homogeneous feasibility problems over a symmetric cone K. As in Chubanov’s method for linear feasibility problems, the algorithm consists of a basic procedure and a step where the solutions are confined to the intersection of a half-space and K. Following an … Read more

An Extension of Chubanov’s Polynomial-Time Linear Programming Algorithm to Second-Order Cone Programming

Recently, Chubanov proposed an interesting new polynomial-time algorithm for linear program. In this paper, we extend his algorithm to second-order cone programming. Article Download View An Extension of Chubanov's Polynomial-Time Linear Programming Algorithm to Second-Order Cone Programming

Improvement of Kalai-Kleitman bound for the diameter of a polyhedron

Recently, Todd got a new bound on the diameter of a polyhedron using an analysis due to Kalai and Kleitman in 1992. In this short note, we prove that the bound by Todd can further be improved. Although our bound is not valid when the dimension is 1 or 2, it is tight when the … Read more

An upper bound for the number of different solutions generated by the primal simplex method with any selection rule of entering variables

Kitahara and Mizuno (2011a) obtained an upper bound for the number of different solutions generated by the primal simplex method with Dantzig’s (the most negative) pivoting rule. In this paper, we obtain an upper bound with any pivoting rule which chooses an entering variable whose reduced cost is negative at each iteration. The bound is … Read more

A Proof by the Simplex Method for the Diameter of a (0,1)-Polytope

Naddef shows that the Hirsch conjecture is true for (0,1)-polytopes by proving that the diameter of any $(0,1)$-polytope in $d$-dimensional Euclidean space is at most $d$. In this short paper, we give a simple proof for the diameter. The proof is based on the number of solutions generated by the simplex method for a linear … Read more