Matchings, hypergraphs, association schemes, and semidefinite optimization

We utilize association schemes to analyze the quality of semidefinite programming (SDP) based convex relaxations of integral packing and covering polyhedra determined by matchings in hypergraphs. As a by-product of our approach, we obtain bounds on the clique and stability numbers of some regular graphs reminiscent of classical bounds by Delsarte and Hoffman. We determine … Read more

Domain-Driven Solver (DDS): a MATLAB-based Software Package for Convex Optimization Problems in Domain-Driven Form

Domain-Driven Solver (DDS) is a MATLAB-based software package for convex optimization problems in Domain-Driven form [11]. The current version of DDS accepts every combination of the following function/set constraints: (1) symmetric cones (LP, SOCP, and SDP); (2) quadratic constraints; (3) direct sums of an arbitrary collection of 2-dimensional convex sets defined as the epigraphs of … Read more

Status Determination by Interior-Point Methods for Convex Optimization Problems in Domain-Driven Form

We study the geometry of convex optimization problems given in a Domain-Driven form and categorize possible statuses of these problems using duality theory. Our duality theory for the Domain-Driven form, which accepts both conic and non-conic constraints, lets us determine and certify statuses of a problem as rigorously as the best approaches for conic formulations … Read more

Strict Complementarity in MaxCut SDP

The MaxCut SDP is one of the most well-known semidefinite programs, and it has many favorable properties. One of its nicest geometric/duality properties is the fact that the vertices of its feasible region correspond exactly to the cuts of a graph, as proved by Laurent and Poljak in 1995. Recall that a boundary point x … Read more

Primal-Dual Interior-Point Methods for Domain-Driven Formulations: Algorithms

We study infeasible-start primal-dual interior-point methods for convex optimization problems given in a typically natural form we denote as Domain-Driven formulation. Our algorithms extend many advantages of primal-dual interior-point techniques available for conic formulations, such as the current best complexity bounds, and more robust certificates of approximate optimality, unboundedness, and infeasibility, to Domain-Driven formulations. The … Read more

Pointed Closed Convex Sets are the Intersection of All Rational Supporting Closed Halfspaces

We prove that every pointed closed convex set in $\mathbb{R}^n$ is the intersection of all the rational closed halfspaces that contain it. This generalizes a previous result by the authors for compact convex sets. Citation arXiv:1802.03296. February 2018 Article Download View Pointed Closed Convex Sets are the Intersection of All Rational Supporting Closed Halfspaces

A Notion of Total Dual Integrality for Convex, Semidefinite, and Extended Formulations

Total dual integrality is a powerful and unifying concept in polyhedral combinatorics and integer programming that enables the refinement of geometric min-max relations given by linear programming Strong Duality into combinatorial min-max theorems. The definition of total dual integrality (TDI) revolves around the existence of optimal dual solutions that are integral, and thus naturally applies … Read more

Facially dual complete (nice) cones and lexicographic tangents

We study the boundary structure of closed convex cones, with a focus on facially dual complete (nice) cones. These cones form a proper subset of facially exposed convex cones, and they behave well in the context of duality theory for convex optimization. Using the well-known and very commonly used concept of tangent cones in nonlinear … Read more

Elementary polytopes with high lift-and-project ranks for strong positive semidefinite operators

We consider operators acting on convex subsets of the unit hypercube. These operators are used in constructing convex relaxations of combinatorial optimization problems presented as a 0,1 integer programming problem or a 0,1 polynomial optimization problem. Our focus is mostly on operators that, when expressed as a lift-and-project operator, involve the use of semidefiniteness constraints … Read more

Quantum and classical coin-flipping protocols based on bit-commitment and their point games

We focus on a family of quantum coin-flipping protocols based on quantum bit-commitment. We discuss how the semidefinite programming formulations of cheating strategies can be reduced to optimizing a linear combination of fidelity functions over a polytope. These turn out to be much simpler semidefinite programs which can be modelled using second-order cone programming problems. … Read more