On Rank-Monotone Graph Operations and Minimal Obstruction Graphs for the Lovász-Schrijver SDP Hierarchy

We study the lift-and-project rank of the stable set polytopes of graphs with respect to the Lovász-Schrijver SDP operator LS_+, with a particular focus on finding and characterizing the smallest graphs with a given LS_+-rank (the least number of iterations of the LS_+ operator on the fractional stable set polytope to compute the stable set … Read more

Stable Set Polytopes with High Lift-and-Project Ranks for the Lovász-Schrijver SDP Operator

\(\) We study the lift-and-project rank of the stable set polytopes of graphs with respect to the Lovász-Schrijver SDP operator \( \text{LS}_+\), with a particular focus on a search for relatively small graphs with high \( \text{LS}_+\)-rank (the least number of iterations of the \( \text{LS}_+\) operator on the fractional stable set polytope to compute … Read more

Linear optimization over homogeneous matrix cones

A convex cone is homogeneous if its automorphism group acts transitively on the interior of the cone, i.e., for every pair of points in the interior of the cone, there exists a cone automorphism that maps one point to the other. Cones that are homogeneous and self-dual are called symmetric. The symmetric cones include the … Read more

Computational complexity of decomposing a symmetric matrix as a sum of positive semidefinite and diagonal matrices

We study several variants of decomposing a symmetric matrix into a sum of a low-rank positive semidefinite matrix and a diagonal matrix. Such decompositions have applications in factor analysis and they have been studied for many decades. On the one hand, we prove that when the rank of the positive semidefinite matrix in the decomposition … Read more

Matchings, hypergraphs, association schemes, and semidefinite optimization

We utilize association schemes to analyze the quality of semidefinite programming (SDP) based convex relaxations of integral packing and covering polyhedra determined by matchings in hypergraphs. As a by-product of our approach, we obtain bounds on the clique and stability numbers of some regular graphs reminiscent of classical bounds by Delsarte and Hoffman. We determine … Read more

Domain-Driven Solver (DDS): a MATLAB-based Software Package for Convex Optimization Problems in Domain-Driven Form

Domain-Driven Solver (DDS) is a MATLAB-based software package for convex optimization problems in Domain-Driven form [11]. The current version of DDS accepts every combination of the following function/set constraints: (1) symmetric cones (LP, SOCP, and SDP); (2) quadratic constraints; (3) direct sums of an arbitrary collection of 2-dimensional convex sets defined as the epigraphs of … Read more

Status Determination by Interior-Point Methods for Convex Optimization Problems in Domain-Driven Form

We study the geometry of convex optimization problems given in a Domain-Driven form and categorize possible statuses of these problems using duality theory. Our duality theory for the Domain-Driven form, which accepts both conic and non-conic constraints, lets us determine and certify statuses of a problem as rigorously as the best approaches for conic formulations … Read more

Strict Complementarity in MaxCut SDP

The MaxCut SDP is one of the most well-known semidefinite programs, and it has many favorable properties. One of its nicest geometric/duality properties is the fact that the vertices of its feasible region correspond exactly to the cuts of a graph, as proved by Laurent and Poljak in 1995. Recall that a boundary point x … Read more

Primal-Dual Interior-Point Methods for Domain-Driven Formulations: Algorithms

We study infeasible-start primal-dual interior-point methods for convex optimization problems given in a typically natural form we denote as Domain-Driven formulation. Our algorithms extend many advantages of primal-dual interior-point techniques available for conic formulations, such as the current best complexity bounds, and more robust certificates of approximate optimality, unboundedness, and infeasibility, to Domain-Driven formulations. The … Read more

Pointed Closed Convex Sets are the Intersection of All Rational Supporting Closed Halfspaces

We prove that every pointed closed convex set in $\mathbb{R}^n$ is the intersection of all the rational closed halfspaces that contain it. This generalizes a previous result by the authors for compact convex sets. Citation arXiv:1802.03296. February 2018 Article Download View Pointed Closed Convex Sets are the Intersection of All Rational Supporting Closed Halfspaces