Multi-depot routing with split deliveries: Models and a branch-and-cut algorithm

We study the split-delivery multi-depot vehicle routing problem (MDSDVRP) which combines the advantages and potential cost-savings of multiple depots and split-deliveries and develop the first exact algorithm for this problem. We propose an integer programming formulation using a comparably small number of decision variables and several sets of valid inequalities. These inequalities focus on ensuring … Read more

Exact Methods for the Traveling Salesman Problem with Drone

Efficiently handling last-mile deliveries becomes more and more important nowadays. Using drones to support classical vehicles allows improving delivery schedules as long as efficient solution methods to plan last-mile deliveries with drones are available. We study exact solution approaches for some variants of the traveling salesman problem with drone (TSP-D) in which a truck and … Read more

Arc routing with electric vehicles: dynamic charging and speed-dependent energy consumption

Concerns about greenhouse gas emissions and government regulations foster the use of electric vehicles. Several recently published articles study the use of electric vehicles (EVs) in node-routing problems. In contrast, this article considers EVs in the context of arc routing while also addressing practically relevant aspects that have not been addressed sufficiently so far. These … Read more

Large-scale Influence Maximization via Maximal Covering Location

Influence maximization aims at identifying a limited set of key individuals in a (social) network which spreads information based on some propagation model and maximizes the number of individuals reached. We show that influence maximization based on the probabilistic independent cascade model can be modeled as a stochastic maximal covering location problem. A reformulation based … Read more

Layered graph approaches for combinatorial optimization problems

Extending the concept of time-space networks, layered graphs associate information about one or multiple resource state values with nodes and arcs. While integer programming formulations based on them allow to model complex problems comparably easy, their large size makes them hard to solve for non-trivial instances. We detail and classify layered graph modeling techniques that … Read more

Least cost influence propagation in (social) networks

Influence maximization problems aim to identify key players in (social) networks and are typically motivated from viral marketing. In this work, we introduce and study the Generalized Least Cost Influence Problem (GLCIP) that generalizes many previously considered problem variants and allows to overcome some of their limitations. A formulation that is based on the concept … Read more

Extended Formulations and Branch-and-Cut Algorithms for the Black-and-White Traveling Salesman Problem

In this paper we study integer linear programming models and develop branch-and-cut algorithms to solve the Black-and-White Traveling Salesman Problem (BWTSP) (Bourgeois et al., 2003) which is a variant of the well known Traveling Salesman Problem (TSP). Two strategies to model the BWTSP have been used in the literature. The problem is either modeled on … Read more