An Integer L-shaped algorithm for the vehicle routing problem with time windows and stochastic demands

This paper addresses the vehicle routing problem with time windows and stochastic demands (VRPTWSD). The problem is modeled as a two-stage stochastic program with recourse, in which routes are designed in the first stage and executed in the second. A failure occurs if the load of the vehicle is insufficient to meet the observed demand … Read more

Exact approaches to the robust vehicle routing problem with time windows and multiple deliverymen

This paper addresses the vehicle routing problem with time windows and multiple deliverymen (VRPTWMD) under uncertain demand as well as uncertain travel and service times. This variant is faced by logistics companies that deliver products to retailers located in congested urban areas, where service times are relatively long compared to travel times. In addition to … Read more

A Robust Optimization Approach for the Unrelated Parallel Machine Scheduling Problem

In this paper, we address the Unrelated Parallel Machine Scheduling Problem (UPMSP) with sequence- and machine-dependent setup times and job due-date constraints. Different uncertainties are typically involved in real-world production planning and scheduling problems. If ignored, they can lead to suboptimal or even infeasible schedules. To avoid this, we present two new robust optimization models … Read more

The robust vehicle routing problem with time windows: compact formulation and branch-price-and-cut method

We address the robust vehicle routing problem with time windows (RVRPTW) under customer demand and travel time uncertainties. As presented thus far in the literature, robust counterparts of standard formulations have challenged general-purpose optimization solvers and specialized branch-and-cut methods. Hence, optimal solutions have been reported for small-scale instances only. Additionally, although the most successful methods … Read more

Mixed integer formulations for a coupled lot-scheduling and vehicle routing problem in furniture settings

We propose and analyze two mathematical programming models for a production, inventory, distribution and routing problem considering real and relevant features from the furniture industry, such as production sequence-dependent setup times, heterogeneous fleet of vehicles, routes extending over one or more periods of the production planning horizon, multiple time windows and customers’ deadlines, among others. … Read more

Robust Optimization for the Vehicle Routing Problem with Multiple Deliverymen

This paper studies the vehicle routing problem with time windows and multiple deliverymen in which customer demands are uncertain and belong to a predetermined polytope. In addition to the routing decisions, this problem aims to define the number of deliverymen used to provide the service to the customers on each route. A new mathematical formulation … Read more

A branch-price-and-cut algorithm for the vehicle routing problem with time windows and multiple deliverymen

We address a variant of the vehicle routing problem with time windows (VRPTW) that includes the decision of how many deliverymen should be assigned to each vehicle. In this variant, the service time at each customer depends on the size of the respective demand and on the number of deliverymen assigned to visit this customer. … Read more

Pickup and delivery problem with time windows: a new compact two-index formulation

We propose a formulation for the pickup and delivery problem with time windows, based on a novel modeling strategy that allows the assignment of vehicles to routes explicitly in two-index flow formulations. It leads to an effective compact formulation that can benefit OR practitioners interested in solving the problem by general-purpose optimization software. Computational experiments … Read more