An efficient dimer method with preconditioning and linesearch

The dimer method is a Hessian-free algorithm for computing saddle points. We augment the method with a linesearch mechanism for automatic step size selection as well as preconditioning capabilities. We prove local linear convergence. A series of numerical tests demonstrate significant performance gains. Citationhttp://arxiv.org/abs/1407.2817ArticleDownload View PDF

An Interior-Point Trust-Funnel Algorithm for Nonlinear Optimization

We present an interior-point trust-funnel algorithm for solving large-scale nonlinear optimization problems. The method is based on an approach proposed by Gould and Toint (Math Prog 122(1):155–196, 2010) that focused on solving equality constrained problems. Our method is similar in that it achieves global convergence guarantees by combining a trust-region methodology with a funnel mechanism, … Read more

Branching and Bounding Improvements for Global Optimization Algorithms with Lipschitz Continuity Properties

We present improvements to branch and bound techniques for globally optimizing functions with Lipschitz continuity properties by developing novel bounding procedures and parallelisation strategies. The bounding procedures involve nonconvex quadratic or cubic lower bounds on the objective and use estimates of the spectrum of the Hessian or derivative tensor, respectively. As the nonconvex lower bounds … Read more

A filter method with unified step computation for nonlinear optimization

We present a filter linesearch method for solving general nonlinear and nonconvex optimization problems. The method is of the filter variety, but uses a robust (always feasible) subproblem based on an exact penalty function to compute a search direction. This contrasts traditional filter methods that use a (separate) restoration phase designed to reduce infeasibility until … Read more

An example of slow convergence for Newton’s method on a function with globally Lipschitz continuous Hessian

An example is presented where Newton’s method for unconstrained minimization is applied to find an $\epsilon$-approximate first-order critical point of a smooth function and takes a multiple of $\epsilon^{-2}$ iterations and function evaluations to terminate, which is as many as the steepest-descent method in its worst-case. The novel feature of the proposed example is that … Read more

CUTEst: a Constrained and Unconstrained Testing Environment with safe threads

We describe the most recent evolution of our constrained and unconstrained testing environment and its accompanying SIF decoder. Code-named SIFDecode and CUTEst, these updated versions feature dynamic memory allocation, a modern thread-safe Fortran modular design, a new Matlab interface and a revised installation procedure integrated with GALAHAD. CitationTechnical Report Rutherford Appleton Laboratory Chilton, Oxfordshire, England, … Read more

On the evaluation complexity of constrained nonlinear least-squares and general constrained nonlinear optimization using second-order methods

When solving the general smooth nonlinear optimization problem involving equality and/or inequality constraints, an approximate first-order critical point of accuracy $\epsilon$ can be obtained by a second-order method using cubic regularization in at most $O(\epsilon^{-3/2})$ problem-functions evaluations, the same order bound as in the unconstrained case. This result is obtained by first showing that the … Read more

On the complexity of the steepest-descent with exact linesearches

The worst-case complexity of the steepest-descent algorithm with exact linesearches for unconstrained smooth optimization is analyzed, and it is shown that the number of iterations of this algorithm which may be necessary to find an iterate at which the norm of the objective function’s gradient is less that a prescribed $\epsilon$ is, essentially, a multiple … Read more

How much patience do you have? A worst-case perspective on smooth nonconvex optimization

The paper presents a survey of recent results in the field of worst-case complexity of algorithms for nonlinear (and possibly nonconvex) smooth optimization. Both constrained and unconstrained case are considered. ArticleDownload View PDF

On the evaluation complexity of cubic regularization methods for potentially rank-deficient nonlinear least-squares problems and its relevance to constrained nonlinear optimization

We propose a new termination criteria suitable for potentially singular, zero or non-zero residual, least-squares problems, with which cubic regularization variants take at most $\mathcal{O}(\epsilon^{-3/2})$ residual- and Jacobian-evaluations to drive either the Euclidean norm of the residual or its gradient below $\epsilon$; this is the best-known bound for potentially singular nonlinear least-squares problems. We then … Read more