EETTlib – Energy-Efficient Train Timetabling Library

We introduce EETTlib, an instance library for the Energy-Efficient Train Timetabling problem. The task in this problem is to adjust a given timetable draft such that several key indicators relating to the energy consumption of the resulting railway traffic are minimized. These include peak power consumption, total energy consumption, loss in recuperation energy, fluctuation in … Read more

Set characterizations and convex extensions for geometric convex-hull proofs

In the present work, we consider Zuckerberg’s method for geometric convex-hull proofs introduced in [Geometric proofs for convex hull defining formulations, Operations Research Letters 44(5), 625–629 (2016)]. It has only been scarcely adopted in the literature so far, despite the great flexibility in designing algorithmic proofs for the completeness of polyhedral descriptions that it offers. … Read more

The Bipartite Boolean Quadric Polytope with Multiple-Choice Constraints

We consider the bipartite boolean quadric polytope (BQP) with multiple-choice constraints and analyse its combinatorial properties. The well-studied BQP is defined as the convex hull of all quadric incidence vectors over a bipartite graph. In this work, we study the case where there is a partition on one of the two bipartite node sets such … Read more

Efficient Formulations and Decomposition Approaches for Power Peak Reduction in Railway Traffic via Timetabling

Over the last few years, optimization models for the energy-efficient operation of railway traffic have received more and more attention, particularly in connection with timetable design. In this work, we study the effect of load management via timetabling. The idea is to consider trains as time-flexible consumers in the railway power supply network and to … Read more

An Online-Learning Approach to Inverse Optimization

In this paper, we demonstrate how to learn the objective function of a decision-maker while only observing the problem input data and the decision-maker’s corresponding decisions over multiple rounds. Our approach is based on online learning and works for linear objectives over arbitrary feasible sets for which we have a linear optimization oracle. As such, … Read more

Staircase Compatibility and its Applications in Scheduling and Piecewise Linearization

We consider the clique problem with multiple-choice constraints (CPMC) and characterize a case where it is possible to give an efficient description of the convex hull of its feasible solutions. This new special case, which we call staircase compatibility, generalizes common properties in several applications and allows for a linear description of the integer feasible … Read more