On local non-global minimizers of quadratic optimization problem with a single quadratic constraint

In this paper, we consider the nonconvex quadratic optimization problem with a single quadratic constraint. First we give a theoretical characterization of the local non-global minimizers. Then we extend the recent characterization of the global minimizer via a generalized eigenvalue problem to the local non-global minimizers. Finally, we use these results to derive an efficient … Read more

A hybrid algorithm for the two-trust-region subproblem

Two-trust-region subproblem (TTRS), which is the minimization of a general quadratic function over the intersection of two full-dimensional ellipsoids, has been the subject of several recent research. In this paper, to solve TTRS, a hybrid of efficient algorithms for finding global and local-nonglobal minimizers of trust-region subproblem and the alternating direction method of multipliers (ADMM) … Read more

A conjugate gradient-based algorithm for large-scale quadratic programming problem with one quadratic constraint

In this paper, we consider the nonconvex quadratically constrained quadratic programming (QCQP) with one quadratic constraint. By employing the conjugate gradient method, an efficient algorithm is proposed to solve QCQP that exploits the sparsity of the involved matrices and solves the problem via solving a sequence of positive definite system of linear equations after identifying … Read more

Local Nonglobal Minima for Solving Large Scale Extended Trust Region Subproblems

We study large scale extended trust region subproblems (eTRS) i.e., the minimization of a general quadratic function subject to a norm constraint, known as the trust region subproblem (TRS) but with an additional linear inequality constraint. It is well known that strong duality holds for the TRS and that there are efficient algorithms for solving … Read more

A Fast Eigenvalue Approach for Solving the Trust Region Subproblem with an Additional Linear Inequality

In this paper, we study the extended trust region subproblem (eTRS) in which the trust region intersects the unit ball with a single linear inequality constraint. By reformulating the Lagrangian dual of eTRS as a two-parameter linear eigenvalue problem, we state a necessary and sufficient condition for its strong duality in terms of an optimal … Read more

Mehrotra-type predictor-corrector algorithms revisited

Motivated by a numerical example which shows that a feasible version of Mehrotra’s original predictor-corrector algorithm might be inefficient in practice, Salahi et al., proposed a so-called safeguard based variant of the algorithm that enjoys polynomial iteration complexity while its practical efficiency is preserved. In this paper we analyze the same Mehrotra’s algorithm from a … Read more

Postponing the Choice of the Barrier Parameter in Mehrotra-Type Predictor-Corrector Algorithms

In \cite{SPT} the authors considered a variant of Mehrotra’s predictor-corrector algorithm that has been widely used in several IPMs based optimization packages. By an example they showed that this variant might make very small steps in order to keep the iterate in a certain neighborhood of the central path, that itself implies the inefficiency of … Read more

New Complexity Analysis of IIPMs for Linear Optimization Based on a Specific Self-Regular Function

Primal-dual Interior-Point Methods (IPMs) have shown their ability in solving large classes of optimization problems efficiently. Feasible IPMs require a strictly feasible starting point to generate the iterates that converge to an optimal solution. The self-dual embedding model provides an elegant solution to this problem with the cost of slightly increasing the size of the … Read more

On Mehrotra-Type Predictor-Corrector Algorithms

In this paper we discuss the polynomiality of Mehrotra-type predictor-corrector algorithms. We consider a variant of the original prototype of the algorithm that has been widely used in several IPM based optimization packages, for which no complexity result is known to date. By an example we show that in this variant the usual Mehrotra-type adaptive … Read more

Adaptive Large Neighborhood Self-Regular Predictor-Corrector IPMs for LO

It is known that predictor-corrector methods in a large neighborhood of the central path are among the most efficient interior point methods (IPMs) for linear optimization (LO) problems. The best iteration bound based on the classical logarithmic barrier function is $O\left(n\log{\frac{n}{\epsilon}}\right)$. In this paper we propose a family of self-regular proximity based predictor-corrector (SR-PC) IPM … Read more