On Subproblem Tradeoffs in Decomposition for Multiobjective Optimization

Multiobjective optimization is widely used in applications for modeling and solving complex decision-making problems. To help resolve computational and cognitive difficulties associated with problems which have more than 3 or 4 objectives, we propose a decomposition and coordination methodology to support decision making for large multiobjective optimization problems (MOPs) with global, quasi-global, and local variables. … Read more

A Branch and Bound Algorithm for Biobjective Mixed Integer Quadratic Programs

Multiobjective quadratic programs (MOQPs) are appealing since convex quadratic programs have elegant mathematical properties and model important applications. Adding mixed-integer variables extends their applicability while the resulting programs become global optimization problems. We design and implement a branch and bound (BB) algorithm for biobjective mixed-integer quadratic programs (BOMIQPs). In contrast to the existing algorithms in … Read more

A branch-and-bound algorithm for biobjective mixed-integer programs

We propose a branch-and-bound (BB) algorithm for biobjective mixed-integer linear programs (BOMILPs). Our approach makes no assumption on the type of problem and we prove that it returns all Pareto points of a BOMILP. We discuss two techniques upon which the BB is based: fathoming rules to eliminate those subproblems that are guaranteed not to … Read more

An Improved Algorithm for Biobjective Integer Programs

A parametric algorithm for identifying the Pareto set of a biobjective integer program is proposed. The algorithm is based on the weighted Chebyshev (Tchebycheff) scalarization, and its running time is asymptotically optimal. A number of extensions are described, including: a technique for handling weakly dominated outcomes, a Pareto set approximation scheme, and an interactive version … Read more