Primal-dual methods for solving infinite-dimensional games

In this paper we show that the infinite-dimensional differential games with simple objective functional can be solved in a finite-dimensional dual form in the space of dual multipliers for the constraints related to the end points of the trajectories. The primal solutions can be easily reconstructed by the appropriate dual subgradient schemes. The suggested schemes … Read more

Universal gradient methods for convex optimization problems

In this paper, we present new methods for black-box convex minimization. They do not need to know in advance the actual level of smoothness of the objective function. Their only essential input parameter is the required accuracy of the solution. At the same time, for each particular problem class they automatically ensure the best possible … Read more

Primal-dual subgradient method for Huge-Scale Linear Conic Problems

In this paper we develop a {\em primal-dual} subgradient method for solving huge-scale Linear Conic Optimization Problems. Our main assumption is that the primal cone is formed as a direct product of many small-dimensional convex cones, and that the matrix $A$ of corresponding linear operator is {\em uniformly sparse}. In this case, our method can … Read more

Subgradient methods for huge-scale optimization problems

We consider a new class of huge-scale problems, the problems with {\em sparse subgradients}. The most important functions of this type are piece-wise linear. For optimization problems with uniform sparsity of corresponding linear operators, we suggest a very efficient implementation of subgradient iterations, which total cost depends {\em logarithmically} in the dimension. This technique is … Read more

Optimizing the Spectral Radius

We suggest an approach for finding the maximal and the minimal spectral radius of linear operators from a given compact family of operators, which share a common invariant cone (e.g. for a family of nonnegative matrices). In case of families with so-called product structure, this leads to efficient algorithms for optimizing the spectral radius and … Read more

A Double Smoothing Technique for Constrained Convex Optimization Problems and Applications to Optimal Control

In this paper, we propose an efficient approach for solving a class of convex optimization problems in Hilbert spaces. Our feasible region is a (possibly infinite-dimensional) simple convex set, i.e. we assume that projections on this set are computationally easy to compute. The problem we consider is the minimization of a convex function over this … Read more

First-order Methods of Smooth Convex Optimization with Inexact Oracle

We introduce the notion of inexact first-order oracle and analyze the behaviour of several first-order methods of smooth convex optimization used with such an oracle. This notion of inexact oracle naturally appears in the context of smoothing techniques, Moreau-Yosida regularization, Augmented Lagrangians and many other situations. We derive complexity estimates for primal, dual and fast … Read more

Solving Infinite-dimensional Optimization Problems by Polynomial Approximation

We solve a class of convex infinite-dimensional optimization problems using a numerical approximation method that does not rely on discretization. Instead, we restrict the decision variable to a sequence of finite-dimensional linear subspaces of the original infinite-dimensional space and solve the corresponding finite-dimensional problems in a efficient way using structured convex optimization techniques. We prove … Read more

Double smoothing technique for infinite-dimensional optimization problems with applications to Optimal Control.

In this paper, we propose an efficient technique for solving some infinite-dimensional problems over the sets of functions of time. In our problem, besides the convex point-wise constraints on state variables, we have convex coupling constraints with finite-dimensional image. Hence, we can formulate a finite-dimensional dual problem, which can be solved by efficient gradient methods. … Read more

Efficiency of coordinate descent methods on huge-scale optimization problems

In this paper we propose new methods for solving huge-scale optimization problems. For problems of this size, even the simplest full-dimensional vector operations are very expensive. Hence, we propose to apply an optimization technique based on random partial update of decision variables. For these methods, we prove the global estimates for the rate of convergence. … Read more