Local superlinear convergence of polynomial-time interior-point methods for hyperbolic cone optimization problems

In this paper, we establish the local superlinear convergence property of some polynomial-time interior-point methods for an important family of conic optimization problems. The main structural property used in our analysis is the logarithmic homogeneity of self-concordant barrier function, which must have {\em negative curvature}. We propose a new path-following predictor-corrector scheme, which work only … Read more

Generalized power method for sparse principal component analysis

In this paper we develop a new approach to sparse principal component analysis (sparse PCA). We propose two single-unit and two block optimization formulations of the sparse PCA problem, aimed at extracting a single sparse dominant principal component of a data matrix, or more components at once, respectively. While the initial formulations involve nonconvex functions, … Read more

Primal-dual interior-point methods with asymmetric barrier

In this paper we develop several polynomial-time interior-point methods (IPM) for solving nonlinear primal-dual conic optimization problem. We assume that the barriers for the primal and the dual cone are not conjugate. This broken symmetry does not allow to apply the standard primal-dual IPM. However, we show that in this situation it is also possible … Read more

Gradient methods for minimizing composite objective function

In this paper we analyze several new methods for solving optimization problems with the objective function formed as a sum of two convex terms: one is smooth and given by a black-box oracle, and another is general but simple and its structure is known. Despite to the bad properties of the sum, such problems, both … Read more

Gradient methods for minimizing composite objective function

In this paper we analyze several new methods for solving optimization problems with the objective function formed as a sum of two convex terms: one is smooth and given by a black-box oracle, and another is general but simple and its structure is known. Despite to the bad properties of the sum, such problems, both … Read more

Cubic regularization of Newton’s method for convex problems with constraints

In this paper we derive the efficiency estimates of the regularized Newton’s method as applied to constrained convex minimization problems and to variational inequalities. We study a one-step Newton’s method and its multistep accelerated version, which converges on smooth convex problems as $O({1 \over k^3})$, where $k$ is the iteration counter. We derive also the … Read more

Nonsymmetric potential-reduction methods for general cones

In this paper we propose two new nonsymmetric primal-dual potential-reduction methods for conic problems. Both methods are based on {\em primal-dual lifting}. This procedure allows to construct a strictly feasible primal-dual pair linked by an exact {\em scaling} relation even if the cones are not symmetric. It is important that all necessary elements of our … Read more

Constructing self-concordant barriers for convex cones

In this paper we develop a technique for constructing self-concordant barriers for convex cones. We start from a simple proof for a variant of standard result on transformation of a $\nu$-self-concordant barrier for a set into a self-concordant barrier for its conic hull with parameter $(3.08 \sqrt{\nu} + 3.57)^2$. Further, we develop a convenient composition … Read more

Towards nonsymmetric conic optimization

In this paper we propose a new interior-point method, which is based on an extension of the ideas of self-scaled optimization to the general cones. We suggest using the primal correction process to find a {\em scaling point}. This point is used to compute a strictly feasible primal-dual pair by simple projection. Then, we define … Read more

On the Riemannian Geometry Defined by Self-Concordant Barriers and Interior-Point Methods

We consider the Riemannian geometry defined on a convex set by the Hessian of a self-concordant barrier function, and its associated geodesic curves. These provide guidance for the construction of efficient interior-point methods for optimizing a linear function over the intersection of the set with an affine manifold. We show that algorithms that follow the … Read more