Modeling and Solving Location Routing and Scheduling Problems

This paper studies location routing and scheduling problems, a class of problems in which the decisions of facility location, vehicle routing, and route assignment are optimized simultaneously. For a version with capacity and time restrictions, two formulations are presented, one graph-based and one set-partitioning-based. For the set-partitioning-based formulation, valid inequalities are identified and their effectiveness … Read more

Progressive Hedging Innovations for a Class of Stochastic Resource Allocation Problems

Progressive hedging (PH) is a scenario-based decomposition technique for solving stochastic programs. While PH has been successfully applied to a number of problems, a variety of issues arise when implementing PH in practice, especially when dealing with very difficult or large-scale mixed-integer problems. In particular, decisions must be made regarding the value of the penalty … Read more

Integrated Forecasting and Inventory Control for Seasonal Demand: a Comparison with the Holt-Winters Approach

We present a data-driven forecasting technique with integrated inventory control for seasonal data and compare it to the traditional Holt-Winters algorithm. Results indicate that the data-driven approach achieves a 2-5% improvement in the average regret. CitationTechnical Report, Lehigh University, Department of Industrial and Systems Engineering, Bethlehem, PA.ArticleDownload View PDF

Clinic Scheduling Models with Overbooking for Patients with Heterogeneous No-show Probabilities

Clinical overbooking is intended to reduce the negative impact of patient no-shows on clinic operations and performance. In this paper, we study the clinical scheduling problem with overbooking for heterogeneous patients, i.e. patients who have different no-show probabilities. We consider the objective of maximizing expected profit, which includes revenue from patients and costs associated with … Read more

GRASP with path-relinking for the multi-plant capacitated lot sizing problem

This paper addresses the independent multi-plant, multi-period, and multi-item capacitated lot sizing problem where transfers between the plants are allowed. This is an NP-hard combinatorial optimization problem and few solution methods have been proposed to solve it. We develop a GRASP (Greedy Randomized Adaptive Search Procedure) heuristic as well as a path-relinking intensification procedure to … Read more

Single Item Lot-Sizing with Nondecreasing Capacities

We consider the single item lot-sizing problem with capacities that are non-decreasing over time. When the cost function is i) non-speculative or Wagner-Whitin (for instance, constant unit production costs and non-negative unit holding costs), and ii) the production set-up costs are non-increasing over time, it is known that the minimum cost lot-sizing problem is polynomially … Read more

An O(n^2) Algorithm for Lot Sizing with Inventory Bounds and Fixed Costs

Lot-sizing problems with inventory bounds and fixed charges have not received much attention in the literature, even though there are many emerging applications in which highly specialized storage is the main activity of interest. The traditional infinite capacity and variable cost assumptions on inventory that have been prevalent in the literature are inappropriate in situations … Read more

A Computational Analysis of Lower Bounds for Big Bucket Production Planning Problems

In this paper, we analyze a variety of approaches to obtain lower bounds for multi-level production planning problems with big bucket capacities, i.e., problems in which multiple items compete for the same resources. We give an extensive survey of both known and new methods, and also establish relationships between some of these methods that, to … Read more

The Value of Information in the Newsvendor Problem

In this work, we investigate the value of information when the decision-maker knows whether a perishable product will be in high, moderate or low demand before placing his order. We derive optimality conditions for the probability of the baseline scenario under symmetric distributions and analyze the impact of the cost parameters on simulation experiments. Our … Read more

The Value of Information in Inventory Management

Inventory management traditionally assumes the precise knowledge of the underlying demand distribution and a risk-neutral manager. New product introduction does not fit this framework because (i) not enough information is available to compute probabilities and (ii) managers are generally risk-averse. In this work, we analyze the value of information for two-stage inventory management in a … Read more