Scheduling with Fixed Maintenance, Shared Resources and Nonlinear Feedrate Constraints: a Mine Planning Case Study

Given a short term mining plan, the task for an operational mine planner is to determine how the equipment in the mine should be used each day. That is, how crushers, loaders and trucks should be used to realise the short term plan. It is important to achieve both grade targets (by blending) and maximise … Read more

Optimal scheduling for replacing perimeter guarding unmanned aerial vehicles

Guarding the perimeter of an area in order to detect potential intruders is an important task in a variety of security-related applications. This task can in many circumstances be performed by a set of camera-equipped unmanned aerial vehicles (UAVs). Such UAVs will occasionally require refueling or recharging, in which case they must temporarily be replaced … Read more

Information Relaxation Bounds for Infinite Horizon Markov Decision Processes

We consider the information relaxation approach for calculating performance bounds for stochastic dynamic programs (DPs), following Brown, Smith, and Sun (2010). This approach generates performance bounds by solving problems with relaxed nonanticipativity constraints and a penalty that punishes violations of these constraints. In this paper, we study infinite horizon DPs with discounted costs and consider … Read more

An Exact Extended Formulation for the Unrelated Parallel Machine Total Weighted Completion Time Problem

The plethora of research on NP-hard parallel machine scheduling problems is focused on heuristics due to the theoretically and practically challenging nature of these problems. Only a handful of exact approaches are available in the literature, and most of these suffer from scalability issues. Moreover, the majority of the papers on the subject are restricted … Read more

A hybrid Lagrangean metaheuristic for single machine scheduling problem with sequence-dependent setup times and due dates

In this article, a hybrid Lagrangean metaheuristic is proposed for single machine scheduling problems with sequence-dependent setup times and due dates. The objective function considered throughout this work, is to minimize the total tardiness. Related works and taxonomies for hybrid metaheuristics are analyzed, through a thorough historical overview. The proposed hybrid Lagrangean metaheuristic is a … Read more

Analysis of mixed integer programming formulations for single machine scheduling problems with sequence dependent setup times and release dates

In this article, six different mixed integer programming (MIP) formulations are proposed and analyzed. These formulations are based on the knowledge of four different paradigms for single machine scheduling problems (SMSP) with sequence dependent setup times and release dates. Each formulation reflects a specific concept on how the variables and parameters are defined, requiring particular … Read more

Tight MIP Formulations of the Power-Based Unit Commitment Problem

This paper provides the convex hull description for the basic operation of slow- and quick-start units in power-based unit commitment (UC) problems. The basic operating constraints that are modeled for both types of units are: 1) generation limits and 2) minimum up and down times. Apart from this, the startup and shutdown processes are also … Read more

A Tight MIP Formulation of the Unit Commitment Problem with Start-up and Shut-down Constraints

This paper provides the convex hull description for the following basic operating constraints of a single power generation unit in Unit Commitment (UC) problems: 1) generation limits, 2) startup and shutdown capabilities, and 3) minimum up and down times. Although the model does not consider some crucial constraints, such as ramping, the proposed constraints can … Read more

Fast Approximations for Online Scheduling of Outpatient Procedure Centers

This paper presents a new model for online decision making. Motivated by the health care delivery application of dynamically allocating patients to procedure rooms in outpatient procedure centers, the online stochastic extensible bin packing problem is described. The objective is to minimize the combined costs of opening procedure rooms and utilizing overtime to complete a … Read more

On the Complexity of the Traveling Umpire Problem

The traveling umpire problem (TUP) consists of determining which games will be handled by each one of several umpire crews during a double round-robin tournament. The objective is to minimize the total distance traveled by the umpires, while respecting constraints that include visiting every team at home, and not seeing a team or venue too … Read more