Coupled task scheduling with exact delays: Literature review and models

The coupled task scheduling problem concerns scheduling a set of jobs, each with at least two tasks and there is an exact delay period between two consecutive tasks, on a set of machines to optimize a performance criterion. While research on the problem dates back to the 1980s, interests in the computational complexity of variants … Read more

Coupled task scheduling with time-dependent processing times

The single machine coupled task scheduling problem includes a set of jobs, each with two separated tasks and there is an exact delay between the tasks. We investigate the single machine coupled task scheduling problem with the objective of minimizing the makespan under identical processing time for the first task and identical delay period for … Read more

Algorithms for single- and multiple-runway Aircraft Landing Problem

The Aircraft Landing Problem is the problem of allocating an airport’s runways to arriving aircraft as well as scheduling the landing time of aircraft, with the objective of minimizing total deviations from the target landing times. This work proposes new approaches to solve the Aircraft Landing Problem. The distinguishing factors of the proposed approaches include … Read more

A Distributionally Robust Analysis of the Program Evaluation and Review Technique

Traditionally, stochastic project planning problems are modeled using the Program Evaluation and Review Technique (PERT). PERT is an attractive technique that is commonly used in practice as it requires specification of only a few characteristics of the activities’ duration. Moreover, its computational burden is extremely low. Over the years, four main disadvantages of PERT have … Read more

Pattern-based models and a cooperative parallel metaheuristic for high school timetabling problems

High school timetabling problems consist in building periodic timetables for class-teacher meetings considering compulsory and non-compulsory requisites. This family of problems has been widely studied since the 1950s, mostly via mixed-integer programming and metaheuristic techniques. However, the efficient obtention of optimal or near-optimal solutions is still a challenge for many problems of practical size. In … Read more

Analysis of Models for the Stochastic Outpatient Procedure Scheduling Problem

In this paper, we present a new stochastic mixed-integer linear programming model for the Stochastic Outpatient Procedure Scheduling Problem (SOPSP). In this problem, we schedule a day’s worth of procedures for a single provider, where each procedure has a known type and associated probability distribution of random duration. Our objective is to minimize the expectation … Read more

A Mixed Integer Linear Program for Optimizing the Utilization of Locomotives with Maintenance Constraints

In this paper we investigate the Locomotive Scheduling Problem, i.e., the optimization of locomotive utilization with prior known transports that must be performed. Since railway timetables are typically planned a year in advance, the aim is to assign locomotives to trains such that the locomotive utilization is maximized while maintenance constraints are taken into account. … Read more

Tight MIP formulations for bounded length cyclic sequences

We study cyclic binary strings with bounds on the lengths of the intervals of consecutive ones and zeros. This is motivated by scheduling problems where such binary strings can be used to represent the state (on/off) of a machine. In this context the bounds correspond to minimum and maximum lengths of on- or off-intervals, and … Read more

Seamless Multimodal Transportation Scheduling

Ride-hailing services have expanded the role of shared mobility in passenger transportation systems, creating new markets and creative planning solutions for major urban centers. In this paper, we consider their use for last-mile passenger transportation in coordination with a mass transit service to provide a seamless multimodal transportation experience for the user. A system that … Read more

Leveraging Predictive Analytics to Control and Coordinate Operations, Asset Loading and Maintenance

This paper aims to advance decision-making in power systems by proposing an integrated framework that combines sensor data analytics and optimization. Our modeling framework consists of two components: (1) a predictive analytics methodology that uses real-time sensor data to predict future degradation and remaining lifetime of generators as a function of the loading conditions, and … Read more