Revisiting the Greedy Approach to Submodular Set Function Maximization

We consider the problem of maximizing a nondecreasing submodular set function over various constraint structures. Specifically, we explore the performance of the greedy algorithm, and a related variant, the locally greedy algorithm in solving submodular function maximization problems. Most classic results on the greedy algorithm and its variant assume the existence of an optimal polynomial-time … Read more

Approximate Solutions for Deterministic and Stochastic Multi-Dimensional Sequencing

We investigate the problem of sequencing jobs that have multiple components. Each component of the job needs to be processed independently on a specified machine. We derive approximate algorithms for the problem of scheduling such vector jobs to minimize their total completion time in the deterministic as well as stochastic setting. In particular, we propose … Read more

A novel elitist multiobjective optimization algorithm: multiobjective extremal optimization

Recently, a general-purpose local-search heuristic method called Extremal Optimization (EO) has been successfully applied to some NP-hard combinatorial optimization problems. This paper presents an investigation on EO with its application in multiobjective optimization and proposes a new novel elitist multiobjective algorithm, called Multiobjective Extremal Optimization (MOEO). In order to extend EO to solve the multiobjective … Read more

Polynomial time algorithms to approximate mixed volumes within a simply exponential factor

We study in this paper randomized algorithms to approximate the mixed volume of well-presented convex compact sets. Our main result is a randomized poly-time algorithm which approximates $V(K_1,…,K_n)$ with multiplicative error $e^n$ and with better rates if the affine dimensions of most of the sets $K_i$ are small.\\ Even such rate is impossible to achieve … Read more

Approximation algorithms for metric tree cover and generalized tour and tree covers

Given a weighted undirected graph $G=(V,E)$, a tree (respectively tour) cover of an edge-weighted graph is a set of edges which forms a tree (resp. closed walk) and covers every other edge in the graph. The tree (resp. tour) cover problem is of finding a minimum weight tree (resp. tour) cover of $G$. Arkin, Halld\’orsson … Read more

A Unified Theorem on SDP Rank Reduction

We consider the problem of finding a low-rank approximate solution to a system of linear equations in symmetric, positive semidefinite matrices. Specifically, let $A_1,\ldots,A_m \in \R^{n\times n}$ be symmetric, positive semidefinite matrices, and let $b_1,\ldots,b_m \ge 0$. We show that if there exists a symmetric, positive semidefinite matrix $X$ to the system $A_i \bullet X … Read more

An Approximation Algorithm for Constructing Error Detecting Prefix Codes

A $k$-bit Hamming prefix code is a binary code with the following property: for any codeword $x$ and any prefix $y$ of another codeword, both $x$ and $y$ having the same length, the Hamming distance between $x$ and $y$ is at least $k$. Given an alphabet $A = [a_1,\ldots,a_n]$ with corresponding probabilities $[p_1,\ldots,p_n]$, the $k$-bit … Read more

On complexity of Shmoys – Swamy class of two-stage linear stochastic programming problems

We consider a class of two-stage linear stochastic programming problems, introduced by Shmoys and Swamy (2004), motivated by a relaxation of a stochastic set cover problem. We show that the sample size required to solve this problem by the sample average approximation (SAA) method with a relative accuracy $\kappa>0$ and confidence $1-\alpha$ is polynomial in … Read more

Approximating the Radii of Point Sets

We consider the problem of computing the outer-radii of point sets. In this problem, we are given integers $n, d, k$ where $k \le d$, and a set $P$ of $n$ points in $R^d$. The goal is to compute the {\em outer $k$-radius} of $P$, denoted by $\kflatr(P)$, which is the minimum, over all $(d-k)$-dimensional … Read more

Hyperbolic Polynomials Approach to Van der Waerden/Schrijver-Valiant like Conjectures :\

The paper describes various combinatorial and algorithmic applications of hyperbolic (multivariate) polynomials . Section 2.2 introduces a new class of polynomials , which include as hyperbolic polynomials as well volume polynomials $Vol(x_1C_1+…+x_nC_n)$ , where $C_i$ are convex compact subsets of $R^n$. This extension leads to randomized poly-time algorithm to approximate $M(C_1,…,C_n)$ (the mixed volume) within … Read more