Extended Formulations and Branch-and-Cut Algorithms for the Black-and-White Traveling Salesman Problem

In this paper we study integer linear programming models and develop branch-and-cut algorithms to solve the Black-and-White Traveling Salesman Problem (BWTSP) (Bourgeois et al., 2003) which is a variant of the well known Traveling Salesman Problem (TSP). Two strategies to model the BWTSP have been used in the literature. The problem is either modeled on … Read more

Exact algorithms for bi-objective ring tree problems with reliability measures

We introduce bi-objective models for ring tree network design with a focus on network reliability within telecommunication applications. Our approaches generalize the capacitated ring tree problem (CRTP) which asks for a partially reliable topology that connects customers with different security requirements to a depot node by combined ring and tree graphs. While the CRTP aims … Read more

Variants in Modeling Time Aspects for the Multiple Traveling Salesmen Problem with Moving Targets

The multiple traveling salesmen problem with moving targets (MT-SPMT) is a generalization of the classical traveling salesmen problem (TSP), where the targets (cities or objects) are moving over time. Additionally, for each target a visibility time window is given. The task is to find routes for several salesmen so that each target is reached exactly … Read more

An Integer Programming approach for the Time-Dependent Traveling Salesman Problem with Time Windows

Congestion in large cities and populated areas is one of the major challenges in urban logistics, and should be addressed at different planning and operational levels. The Time-Dependent Travelling Salesman Problem (TDTSP) is a generalization of the well known Traveling Salesman Problem (TSP) where the travel times are not assumed to be constant along the … Read more

Branch-and-Cut approaches for p-Cluster Editing

This paper deals with a variant of the well-known Cluster Editing Problem (CEP), more precisely, the \textit{p}-CEP, in which a given input graph should be edited by adding and/or removing edges in such a way that \textit{p} vertex-disjoint cliques (clusters) are generated with the minimum number of editions. We introduce several valid inequalities where some … Read more

Bi-objective branch–and–cut algorithms: Applications to the single source capacitated facility location problem

Most real–world optimization problems are of a multi–objective nature, involving objectives which are conflicting and incomparable. Solving a multi–objective optimization problem requires a method which can generate the set of rational compromises between the objectives. In this paper, we propose two distinct bound set based branch–and–cut algorithms for bi–objective combinatorial optimization problems, based on implicitly … Read more

Lagrangian and Branch-and-Cut Approaches for Upgrading Spanning Tree Problems

Problems aiming at finding budget constrained optimal upgrading schemes to improve network performance have received attention over the last two decades. In their general setting, these problems consist of designing a network and, simultaneously, allocating (limited) upgrading resources in order to enhance the performance of the designed network. In this paper we address two particular … Read more

Projection Results for the k-Partition Problem

The k-partition problem is an NP-hard combinatorial optimisation problem with many applications. Chopra and Rao introduced two integer programming formulations of this problem, one having both node and edge variables, and the other having only edge variables. We show that, if we take the polytopes associated with the `edge-only’ formulation, and project them into a … Read more

Online Learning for Strong Branching Approximation in Branch-and-Bound

We present an online learning approach to variable branching in branch-and-bound for mixed-integer linear problems. Our approach consists in learning strong branching scores in an online fashion and in using them to take branching decisions. More specifically, numerical scores are used to rank the branching candidates. If, for a given variable, the learned approximation is … Read more

New Exact Approaches to Row Layout Problems

Given a set of departments, a number of rows and pairwise connectivities between these departments, the multi-row facility layout problem (MRFLP) looks for a non-overlapping arrangement of these departments in the rows such that the weighted sum of the center-to-center distances is minimized. As even small instances of the (MRFLP) are rather challenging, several special … Read more