Large-scale optimization with the primal-dual column generation method

The primal-dual column generation method (PDCGM) is a general-purpose column generation technique that relies on the primal-dual interior point method to solve the restricted master problems. The use of this interior point method variant allows to obtain suboptimal and well-centered dual solutions which naturally stabilizes the column generation. A reduction in the number of calls … Read more

On the Coupled Continuous Knapsack Problems: Projection Onto the Volume Constrained Gibbs N-Simplex

Coupled continuous quadratic knapsack problems (CCK) are introduced in the present study. The solution of a CCK problem is equivalent to the projection of an arbitrary point onto the volume constrained Gibbs N-simplex, which has a wide range of applications in computational science and engineering. Three algorithms have been developed in the present study to … Read more

Stability of Polynomial Differential Equations: Complexity and Converse Lyapunov Questions

We consider polynomial differential equations and make a number of contributions to the questions of (i) complexity of deciding stability, (ii) existence of polynomial Lyapunov functions, and (iii) existence of sum of squares (sos) Lyapunov functions. (i) We show that deciding local or global asymptotic stability of cubic vector fields is strongly NP-hard. Simple variations … Read more

Inexact Coordinate Descent: Complexity and Preconditioning

In this paper we consider the problem of minimizing a convex function using a randomized block coordinate descent method. One of the key steps at each iteration of the algorithm is determining the update to a block of variables. Existing algorithms assume that in order to compute the update, a particular subproblem is solved exactly. … Read more

Separable Approximations and Decomposition Methods for the Augmented Lagrangian

In this paper we study decomposition methods based on separable approximations for minimizing the augmented Lagrangian. In particular, we study and compare the Diagonal Quadratic Approximation Method (DQAM) of Mulvey and Ruszczy\'{n}ski and the Parallel Coordinate Descent Method (PCDM) of Richt\'{a}rik and Tak\'{a}\v{c}. We show that the two methods are equivalent for feasibility problems up … Read more

String-Averaging Projected Subgradient Methods for Constrained Minimization

We consider constrained minimization problems and propose to replace the projection onto the entire feasible region, required in the Projected Subgradient Method (PSM), by projections onto the individual sets whose intersection forms the entire feasible region. Specifically, we propose to perform such projections onto the individual sets in an algorithmic regime of a feasibility-seeking iterative … Read more

Composite Self-concordant Minimization

We propose a variable metric framework for minimizing the sum of a self-concordant function and a possibly non-smooth convex function endowed with a computable proximal operator. We theoretically establish the convergence of our framework without relying on the usual Lipschitz gradient assumption on the smooth part. An important highlight of our work is a new … Read more

Inverse Parametric Optimization with an Application to Hybrid System Control

We present a number of results on inverse parametric optimization and its application to hybrid system control. We show that any function that can be written as the difference of two convex functions can also be written as a linear mapping of the solution to a convex parametric optimization problem. We exploit these results in … Read more

Multiperiod Portfolio Optimization with General Transaction Costs

We analyze the properties of the optimal portfolio policy for a multiperiod mean-variance investor facing multiple risky assets in the presence of general transaction costs such as proportional, market impact, and quadratic transaction costs. For proportional transaction costs, we find that a buy-and-hold policy is optimal: if the starting portfolio is outside a parallelogram-shaped no-trade … Read more

On Lower Complexity Bounds for Large-Scale Smooth Convex Optimization

In this note we present tight lower bounds on the information-based complexity of large-scale smooth convex minimization problems. We demonstrate, in particular, that the k-step Conditional Gradient (a.k.a. Frank-Wolfe) algorithm as applied to minimizing smooth convex functions over the n-dimensional box with n ≥ k is optimal, up to an O(ln n)-factor, in terms of … Read more