Adaptive Accelerated Gradient Converging Methods under Holderian Error Bound Condition

In this paper, we focus our study on the convergence of (proximal) gradient methods and accelerated (proximal) gradient methods for smooth (composite) optimization under a H\”{o}lderian error bound (HEB) condition. We first show that proximal gradient (PG) method is automatically adaptive to HEB while accelerated proximal gradient (APG) method can be adaptive to HEB by … Read more

Efficient solution of quadratically constrained quadratic subproblems within the MADS algorithm

The Mesh Adaptive Direct Search algorithm (MADS) is an iterative method for constrained blackbox optimization problems. One of the optional MADS features is a versatile search step in which quadratic models are built leading to a series of quadratically constrained quadratic subproblems. This work explores different algorithms that exploit the structure of the quadratic models: … Read more

The Rate of Convergence of Augmented Lagrange Method for a Composite Optimization Problem

In this paper we analyze the rate of local convergence of the augmented Lagrange method for solving optimization problems with equality constraints and the objective function expressed as the sum of a convex function and a twice continuously differentiable function. The presence of the non-smoothness of the convex function in the objective requires extensive tools … Read more

Locally weighted regression models for surrogate-assisted design optimization

Locally weighted regression combines the advantages of polynomial regression and kernel smoothing. We present three ideas for appropriate and effective use of LOcally WEighted Scatterplot Smoothing (LOWESS) models for surrogate optimization. First, a method is proposed to reduce the computational cost of LOWESS models. Second, a local scaling coefficient is introduced to adapt LOWESS models … Read more

Extending the ergodic convergence rate of the proximal ADMM

Pointwise and ergodic iteration-complexity results for the proximal alternating direction method of multipliers (ADMM) for any stepsize in $(0,(1+\sqrt{5})/2)$ have been recently established in the literature. In addition to giving alternative proofs of these results, this paper also extends the ergodic iteration-complexity result to include the case in which the stepsize is equal to $(1+\sqrt{5})/2$. … Read more

Cyclic Coordinate Update Algorithms for Fixed-Point Problems: Analysis and Applications

Many problems reduce to the fixed-point problem of solving $x=T(x)$. To this problem, we apply the coordinate-update algorithms, which update only one or a few components of $x$ at each step. When each update is cheap, these algorithms are faster than the full fixed-point iteration (which updates all the components). In this paper, we focus … Read more

How to project onto extended second order cones

The extended second order cones were introduced by S. Z. Németh and G. Zhang in [S. Z. Németh and G. Zhang. Extended Lorentz cones and variational inequalities on cylinders. J. Optim. Theory Appl., 168(3):756-768, 2016] for solving mixed complementarity problems and variational inequalities on cylinders. R. Sznajder in [R. Sznajder. The Lyapunov rank of extended … Read more

Complexity of the relaxed Peaceman-Rachford splitting method for the sum of two maximal strongly monotone operators

This paper considers the relaxed Peaceman-Rachford (PR) splitting method for fi nding an approximate solution of a monotone inclusion whose underlying operator consists of the sum of two maximal strongly monotone operators. Using general results obtained in the setting of a non-Euclidean hybrid proximal extragradient framework, convergence of the iterates, as well as pointwise and ergodic … Read more

Homotopy Smoothing for Non-Smooth Problems with Lower Complexity than O(1/epsilon)

In this paper, we develop a novel {\bf ho}moto{\bf p}y {\bf s}moothing (HOPS) algorithm for solving a family of non-smooth problems that is composed of a non-smooth term with an explicit max-structure and a smooth term or a simple non-smooth term whose proximal mapping is easy to compute. The best known iteration complexity for solving … Read more