Completely Positive Reformulations for Polynomial Optimization

Polynomial optimization encompasses a very rich class of problems in which both the objective and constraints can be written in terms of polynomials on the decision variables. There is a well stablished body of research on quadratic polynomial optimization problems based on reformulations of the original problem as a conic program over the cone of … Read more

Rounding on the standard simplex: regular grids for global optimization

Given a point on the standard simplex, we calculate a proximal point on the regular grid which is closest with respect to any norm in a large class, including all $\ell^p$-norms for $p\ge 1$. We show that the minimal $\ell^p$-distance to the regular grid on the standard simplex can exceed one, even for very fine … Read more

Efficient random coordinate descent algorithms for large-scale structured nonconvex optimization

In this paper we analyze several new methods for solving nonconvex optimization problems with the objective function formed as a sum of two terms: one is nonconvex and smooth, and another is convex but simple and its structure is known. Further, we consider both cases: unconstrained and linearly constrained nonconvex problems. For optimization problems of … Read more

A note on Legendre-Fenchel conjugate of the product of two positive-definite quadratic forms

The Legendre-Fenchel conjugate of the product of two positive-definite quadratic forms was posted as an open question in the field of nonlinear analysis and optimization by Hiriart-Urruty [`Question 11′ in {\it SIAM Review} 49, 255-273, (2007)]. Under a convex assumption on the function, it was answered by Zhao [SIAM J. Matrix Analysis $\&$ Applications, 31(4), … Read more

Branch-and-Sandwich: A Deterministic Global Optimization Algorithm for Optimistic Bilevel Programming Problems

We present a global optimization algorithm, Branch-and-Sandwich, for optimistic bilevel programming problems which satisfy a regularity condition in the inner problem. The functions involved are assumed to be nonconvex and twice continuously differentiable. The proposed approach can be interpreted as the exploration of two solution spaces (corresponding to the inner and the outer problems) using … Read more

A Reliable Affine Relaxation Method for Global Optimization

An automatic method for constructing linear relaxations of constrained global optimization problems is proposed. Such a construction is based on affine and interval arithmetics and uses operator overloading. These linear programs have exactly the same numbers of variables and of inequality constraints as the given problems. Each equality constraint is replaced by two inequalities. This … Read more

A Generalization of a Theorem of Arrow, Barankin and Blackwell to a Nonconvex Case

The paper presents a generalization of a known density theorem of Arrow, Barankin, and Blackwell for properly efficient points defined as support points of sets with respect to monotonically increasing sublinear functions. This result is shown to hold for nonconvex sets of a reflexive Banach space partially ordered by a Bishop–Phelps cone. CitationDepartment of Industrial … Read more

On RIC bounds of Compressed Sensing Matrices for Approximating Sparse Solutions Using Lq Quasi Norms

This paper follows the recent discussion on the sparse solution recovery with quasi-norms Lq; q\in(0,1) when the sensing matrix possesses a Restricted Isometry Constant \delta_{2k} (RIC). Our key tool is an improvement on a version of “the converse of a generalized Cauchy-Schwarz inequality” extended to the setting of quasi-norm. We show that, if \delta_{2k}\le 1/2, … Read more

Branch-and-Lift Algorithm for Deterministic Global Optimization in Nonlinear Optimal Control

This paper presents a branch-and-lift algorithm for solving optimal control problems with smooth nonlinear dynamics and nonconvex objective and constraint functionals to guaranteed global optimality. This algorithm features a direct sequential method and builds upon a spatial branch-and-bound algorithm. A new operation, called lifting, is introduced which refines the control parameterization via a Gram-Schmidt orthogonalization … Read more

On valid inequalities for quadratic programming with continuous variables and binary indicators

In this paper we study valid inequalities for a fundamental set that involves a continuous vector variable x in [0,1]^n, its associated quadratic form x x’ and its binary indicators. This structure appears when deriving strong relaxations for mixed integer quadratic programs (MIQPs). We treat valid inequalities for this set as lifted from QPB, which … Read more