Pseudo basic steps: Bound improvement guarantees from Lagrangian decomposition in convex disjunctive programming

An elementary, but fundamental, operation in disjunctive programming is a basic step, which is the intersection of two disjunctions to form a new disjunction. Basic steps bring a disjunctive set in regular form closer to its disjunctive normal form and, in turn, produce relaxations that are at least as tight. An open question is: What … Read more

Convex Relaxations for Quadratic On/Off Constraints and Applications to Optimal Transmission Switching

This paper studies mixed-integer nonlinear programs featuring disjunctive constraints and trigonometric functions. We first characterize the convex hull of univariate quadratic on/off constraints in the space of original variables using perspective functions. We then introduce new tight quadratic relaxations for trigonometric functions featuring variables with asymmetrical bounds. These results are used to further tighten recent … Read more

Towards Simulation Based Mixed-Integer Optimization with Differential Equations

We propose a decomposition based method for solving mixed-integer nonlinear optimization problems with “black-box” nonlinearities, where the latter, e.g., may arise due to differential equations or expensive simulation runs. The method alternatingly solves a mixed-integer linear master problem and a separation problem for iteratively refining the mixed-integer linear relaxation of the nonlinearity. We prove that … Read more

A computationally useful algebraic representation of nonlinear disjunctive convex sets using the perspective function

Nonlinear disjunctive convex sets arise naturally in the formulation or solution methods of many discrete–continuous optimization problems. Often, a tight algebraic representation of the disjunctive convex set is sought, with the tightest such representation involving the characterization of the convex hull of the disjunctive convex set. In the most general case, this can be explicitly … Read more

Complete Description of Matching Polytopes with One Linearized Quadratic Term for Bipartite Graphs

We consider, for complete bipartite graphs, the convex hulls of characteristic vectors of matchings, extended by a binary number indicating whether the matching contains two specific edges. This polytope is associated to the quadratic matching problem with a single linearized quadratic term. We provide a complete irredundant inequality description, which settles a conjecture by Klein … Read more

Solving Highly Detailed Gas Transport MINLPs: Block Separability and Penalty Alternating Direction Methods

Detailed modeling of gas transport problems leads to nonlinear and nonconvex mixed-integer optimization or feasibility models (MINLPs) because both the incorporation of discrete controls of the network as well as accurate physical and technical modeling is required in order to achieve practical solutions. Hence, ignoring certain parts of the physics model is not valid for … Read more

An Adaptive Discretization MINLP Algorithm for Optimal Synthesis of Decentralized Energy Supply Systems

Decentralized energy supply systems (DESS) are highly integrated and complex systems designed to meet time-varying energy demands, e.g., heating, cooling, and electricity. The synthesis problem of DESS addresses combining various types of energy conversion units, choosing their sizing and operations to maximize an objective function, e.g., the net present value. In practice, investment costs and … Read more

Three ideas for a Feasibility Pump for nonconvex MINLP

We describe an implementation of the Feasibility Pump heuristic for nonconvex MINLPs. Our implementation takes advantage of three novel techniques, which we discuss here: a hierarchy of procedures for obtaining an integer solution, a generalized definition of the distance function that takes into account the nonlinear character of the problem, and the insertion of linearization … Read more

Minimization of Akaike’s Information Criterion in Linear Regression Analysis via Mixed Integer Nonlinear Program

Akaike’s information criterion (AIC) is a measure of the quality of a statistical model for a given set of data. We can determine the best statistical model for a particular data set by the minimization of the AIC. Since we need to evaluate exponentially many candidates of the model by the minimization of the AIC, … Read more

Ellipsoidal Mixed-Integer Representability

Representability results for mixed-integer linear systems play a fundamental role in optimization since they give geometric characterizations of the feasible sets that can be formulated by mixed-integer linear programming. We consider a natural extension of mixed-integer linear systems obtained by adding just one ellipsoidal inequality. The set of points that can be described, possibly using … Read more