Experiments with Conflict Analysis in Mixed Integer Programming

The analysis of infeasible subproblems plays an import role in solving mixed integer programs (MIPs) and is implemented in most major MIP solvers. There are two fundamentally different concepts to generate valid global constraints from infeasible subproblems. The first is to analyze the sequence of implications obtained by domain propagation that led to infeasibility. The … Read more

Fast approximate solution of large dense linear programs

We show how random projections can be used to solve large-scale dense linear programs approximately. This is a new application of techniques which are now fairly well known in probabilistic algorithms, but have never yet been systematically applied to the fundamental class of Linear Programming. We develop the necessary theoretical framework, and show that this … Read more

A Primal-Dual Homotopy Algorithm for l_1-Minimization with l_inf-Constraints

In this paper we propose a primal-dual homotopy method for $\ell_1$-minimization problems with infinity norm constraints in the context of sparse reconstruction. The natural homotopy parameter is the value of the bound for the constraints and we show that there exists a piecewise linear solution path with finitely many break points for the primal problem … Read more

Optimized choice of parameters in interior-point methods for linear programming

In this work, we propose a predictor-corrector interior point method for linear programming in a primal-dual context, where the next iterate is chosen by the minimization of a polynomial merit function of three variables: the first is the steplength, the second defines the central path and the third models the weight of a corrector direction. … Read more

Can linear superiorization be useful for linear optimization problems?

Linear superiorization considers linear programming problems but instead of attempting to solve them with linear optimization methods it employs perturbation resilient feasibility-seeking algorithms and steers them toward reduced (not necessarily minimal) target function values. The two questions that we set out to explore experimentally are (i) Does linear superiorization provide a feasible point whose linear … Read more

Linear superiorization for infeasible linear programming

Linear superiorization (abbreviated: LinSup) considers linear programming (LP) problems wherein the constraints as well as the objective function are linear. It allows to steer the iterates of a feasibility-seeking iterative process toward feasible points that have lower (not necessarily minimal) values of the objective function than points that would have been reached by the same … Read more

A generalized simplex method for integer problems given by verification oracles

We consider a linear problem over a finite set of integer vectors and assume that there is a verification oracle, which is an algorithm being able to verify whether a given vector optimizes a given linear function over the feasible set. Given an initial solution, the algorithm proposed in this paper finds an optimal solution … Read more

An inexact potential reduction method for linear programming

A class of interior point methods using inexact directions is analysed. The linear system arising in interior point methods for linear programming is reformulated such that the solution is less sensitive to perturbations in the right-hand side. For the new system an implementable condition is formulated that controls the relative error in the solution. Based … Read more

Creating Standard Load Profiles in Residential and Commercial Sectors in Germany for 2016, 2025 and 2040

Standard load profiles (SLPs) are used to calculate the natural gas demand of non-daily metered customers based on temperature forecasts. The most recent version of natural gas SLPs in Germany was published by the Federal Association of Energy and Water in June 2015. With the concept SigLinDE, a linearization of the old SLPs was carried … Read more

Implementation of Interior-point Methods for LP based on Krylov Subspace Iterative Solvers with Inner-iteration Preconditioning

We apply novel inner-iteration preconditioned Krylov subspace methods to the interior-point algorithm for linear programming (LP). Inner-iteration preconditioners recently proposed by Morikuni and Hayami enable us to overcome the severe ill-conditioning of linear equations solved in the final phase of interior-point iterations. The employed Krylov subspace methods do not suffer from rank-deficiency and therefore no … Read more