Necessary optimality conditions for multiobjective bilevel programs

The multiobjective bilevel program is a sequence of two optimization problems where the upper level problem is multiobjective and the constraint region of the upper level problem is determined implicitly by the solution set to the lower level problem. In the case where the Karush-Kuhn-Tucker (KKT) condition is necessary and sufficient for global optimality of … Read more

Optimal location of family homes for dual career couples

The number of dual-career couples with children is growing fast. These couples face various challenging problems of organizing their lifes, in particular connected with childcare and time-management. As a typical example we study one of the difficult decision problems of a dual career couple from the point of view of operations research with a particular … Read more

Intractability of approximate multi-dimensional nonlinear optimization on independence systems

We consider optimization of nonlinear objective functions that balance $d$ linear criteria over $n$-element independence systems presented by linear-optimization oracles. For $d=1$, we have previously shown that an $r$-best approximate solution can be found in polynomial time. Here, using an extended Erdos-Ko-Rado theorem of Frankl, we show that for $d=2$, finding a $\rho n$-best solution … Read more

An Interior Proximal Method in Vector Optimization

This paper studies the vector optimization problem of finding weakly ef- ficient points for maps from Rn to Rm, with respect to the partial order induced by a closed, convex, and pointed cone C ⊂ Rm, with nonempty inte- rior. We develop for this problem an extension of the proximal point method for scalar-valued convex … Read more

On the convergence of the projected gradient method for vector optimization

In 2004, Graña Drummond and Iusem proposed an extension of the projected gradient method for constrained vector optimization problems. In that method, an Armijo-like rule, implemented with a backtracking procedure, was used in order to determine the steplengths. The authors just showed stationarity of all cluster points and, for another version of the algorithm (with … Read more

Dido’s Problem and Pareto Optimality

Under study is the new class of geometrical extremal problems in which it is required to achieve the best result in the presence of conflicting goals; e.g., given the surface area of a convex body~$\mathfrak x$, we try to maximize the volume of~$\mathfrak x$ and minimize the width of~$\mathfrak x$ simultaneously. These problems are addressed … Read more

A Logarithmic-Quadratic Proximal Point Scalarization Method for Multiobjective Programming

We present a proximal point method to solve multiobjective problems based on the scalarization for maps. We build a family of a convex scalar strict representation of a convex map F with respect to the lexicographic order on Rm and we add a variant of the logarithmquadratic regularization of Auslender, where the unconstrained variables in … Read more

Optimality conditions for several type of efficient solutions of set-valued optimization problems

A simple unified framework is presented for the study of strong efficient solutions, weak efficient solutions, positive proper efficient solutions, Henig global proper efficient solutions, Henig proper efficient solutions, super efficient solutions, Benson proper efficient solutions, Hartley proper efficient solutions, Hurwicz proper efficient solutions and Borwein proper efficient solutions of set-valued optimization problem with/or without … Read more

Solving multi-objective network flow problems with an interior point method

In this paper we present a primal-dual interior-point algorithm to solve a class of multi-objective network flow problems. More precisely, our algorithm is an extension of the single-objective primal-dual infeasible and inexact interior point method for multi-objective linear network flow problems. A comparison with standard interior point methods is provided and experimental results on bi-objective … Read more

THE EKELAND VARIATIONAL PRINCIPLE FOR HENIG PROPER MINIMIZERS AND SUPER MINIMIZERS

In this paper we consider, for the first time, approximate Henig proper minimizers and approximate super minimizers of a set-valued map F with values in a partially ordered vector space and formulate two versions of the Ekeland variational principle for these points involving coderivatives in the senses of Ioffe, Clarke and Mordukhovich. As applications we … Read more