Stochastic Dynamic Lot-sizing with Supplier-Driven Substitution and Service Level Constraints

We consider a multi-stage stochastic lot-sizing problem with service level constraints and supplier-driven product substitution. A firm has multiple products and it has the option to meet demand from substitutable products at a cost. Considering the uncertainty in future demands, the firm wishes to make ordering decisions in every period such that the probability that … Read more

Data-Driven Stochastic Dual Dynamic Programming: Performance Guarantees and Regularization Schemes

We propose a data-driven extension of the stochastic dual dynamic programming (SDDP) algorithm for multistage stochastic linear programs under a continuous-state, non-stationary Markov data process. Unlike traditional SDDP methods—which often assume a known probability distribution, stagewise independent data process, or uncertainty restricted to the right-hand side of constraints—our approach overcomes these limitations, making it more … Read more

Distributionally robust chance-constrained Markov decision processes

Markov decision process (MDP) is a decision making framework where a decision maker is interested in maximizing the expected discounted value of a stream of rewards received at future stages at various states which are visited according to a controlled Markov chain. Many algorithms including linear programming methods are available in the literature to compute … Read more

A comparison of different approaches for the vehicle routing problem with stochastic demands

The vehicle routing problem with stochastic demands (VRPSD) is a well studied variant of the classic (deterministic) capacitated vehicle routing problem (CVRP) where the customer demands are given by random variables. Two prominent approaches for solving the VRPSD model it either as a chance-constraint program (CC-VRPSD) or as a two-stage stochastic program (2S-VRPSD). In this … Read more

On Generalization and Regularization via Wasserstein Distributionally Robust Optimization

Wasserstein distributionally robust optimization (DRO) has found success in operations research and machine learning applications as a powerful means to obtain solutions with favourable out-of-sample performances. Two compelling explanations for the success are the generalization bounds derived from Wasserstein DRO and the equivalency between Wasserstein DRO and the regularization scheme commonly applied in machine learning. … Read more

Scheduling of healthcare professionals using Bayesian Optimization

In this paper we present a Bayesian optimization framework that iteratively “learns” good schedules for healthcare professionals of outpatient healthcare in a hospital, that minimize the overall number of patients in queue — we understand that a patient in schedule is one in queue. The hospital has several medical specialties and each is modeled as … Read more

Stochastic Programming Models for a Fleet Sizing and Appointment Scheduling Problem with Random Service and Travel Times

We propose a new stochastic mixed-integer linear programming model for a home service fleet sizing and appointment scheduling problem (HFASP) with random service and travel times. Specifically, given a set of providers and a set of geographically distributed customers within a service region, our model solves the following decision problems simultaneously: (i) a fleet sizing … Read more

A Simple Algorithm for Online Decision Making

Motivated by recent progress on online linear programming (OLP), we study the online decision making problem (ODMP) as a natural generalization of OLP. In ODMP, there exists a single decision maker who makes a series of decisions spread out over a total of \(T\) time stages. At each time stage, the decision maker makes a … Read more

Exact Approaches for Convex Adjustable Robust Optimization

Adjustable Robust Optimization (ARO) is a paradigm for facing uncertainty in a decision problem, in case some recourse actions are allowed after the actual value of all input parameters is revealed. While several approaches have been introduced for the linear case, little is known regarding exact methods for the convex case. In this work, we … Read more

Leveraging Decision Diagrams to Solve Two-stage Stochastic Programs with Binary Recourse and Logical Linking Constraints

Two-stage stochastic programs with binary recourse are challenging to solve and efficient solution methods for such problems have been limited. In this work, we generalize an existing binary decision diagram-based (BDD-based) approach of Lozano and Smith (Math. Program., 2018) to solve a special class of two-stage stochastic programs with binary recourse. In this setting, the … Read more