Stochastic Gauss-Newton Algorithms for Online PCA

In this paper, we propose a stochastic Gauss-Newton (SGN) algorithm to study the online principal component analysis (OPCA) problem, which is formulated by using the symmetric low-rank product (SLRP) model for dominant eigenspace calculation. Compared with existing OPCA solvers, SGN is of improved robustness with respect to the varying input data and algorithm parameters. In … Read more

Parametric complexity analysis for a class of first-order Adagrad-like algorithms

A class of algorithms for optimization in the presence of noise is presented, that does not require the evaluation of the objective function. This class generalizes the well-known Adagrad method. The complexity of this class is then analyzed as a function of its parameters, and it is shown that some methods of the class enjoy … Read more

Discrete Optimal Transport with Independent Marginals is #P-Hard

We study the computational complexity of the optimal transport problem that evaluates the Wasserstein distance between the distributions of two K-dimensional discrete random vectors. The best known algorithms for this problem run in polynomial time in the maximum of the number of atoms of the two distributions. However, if the components of either random vector … Read more

Stochastic trust-region and direct-search methods: A weak tail bound condition and reduced sample sizing

Using tail bounds, we introduce a new probabilistic condition for function estimation in stochastic derivative-free optimization which leads to a reduction in the number of samples and eases algorithmic analyses. Moreover, we develop simple stochastic direct-search and trust-region methods for the optimization of a potentially non-smooth function whose values can only be estimated via stochastic … Read more

Optimization-based Scenario Reduction for Data-Driven Two-stage Stochastic Optimization

We propose a novel, optimization-based method that takes into account the objective and problem structure for reducing the number of scenarios, m, needed for solving two-stage stochastic optimization problems. We develop a corresponding convex optimization-based algorithm, and show that as the number of scenarios increase, the proposed method recovers the SAA solution. We report computational … Read more

Bounds for Multistage Mixed-Integer Distributionally Robust Optimization

Multistage mixed-integer distributionally robust optimization (DRO) forms a class of extremely challenging problems since their size grows exponentially with the number of stages. One way to model the uncertainty in multistage DRO is by creating sets of conditional distributions (the so-called conditional ambiguity sets) on a finite scenario tree and requiring that such distributions remain … Read more

A barrier Lagrangian dual method for multi-stage stochastic convex semidefinite optimization

In this paper, we present a polynomial-time barrier algorithm for solving multi-stage stochastic convex semidefinite optimization based on the Lagrangian dual method which relaxes the nonanticipativity constraints. We show that the barrier Lagrangian dual functions for our setting form self-concordant families with respect to barrier parameters. We also use the barrier function method to improve … Read more

Distributionally Robust Modeling of Optimal Control

The aim of this paper is to formulate several questions related to distributionally robust Stochastic Optimal Control modeling. As an example, the distributionally robust counterpart of the classical inventory model is discussed in details. Finite and infinite horizon stationary settings are considered. ArticleDownload View PDF

Chance constrained nonlinear optimization with skewed distributions and dependent rows

This paper discusses chance constrained optimization problems where the constraints are linear to the random variables but nonlinear to the decision variables. For the individual nonlinear chance constraint, we derive tractable reformulation under finite Gaussian mixture distributions and design tight approximation under the generalized hyperbolic distribution. For the joint nonlinear chance constraint, we study several … Read more

Graph topology invariant gradient and sampling complexity for decentralized and stochastic optimization

One fundamental problem in decentralized multi-agent optimization is the trade-off between gradient/sampling complexity and communication complexity. We propose new algorithms whose gradient and sampling complexities are graph topology invariant, while their communication complexities remain optimal. For convex smooth deterministic problems, we propose a primal dual sliding (PDS) algorithm that computes an $\epsilon$-solution with $O((\tilde{L}/\epsilon)^{1/2})$ gradient … Read more