Frequency Planning and Ramifications of Coloring

This paper surveys frequency assignment problems coming up in planning wireless communication services. It particularly focuses on cellular mobile phone systems such as GSM, a technology that revolutionizes communication. Traditional vertex coloring provides a conceptual framework for the mathematical modeling of many frequency planning problems. This basic form, however, needs various extensions to cover technical … Read more

Re-Optimization of Signaling Transfer Points

In this paper we describe the results of a computational study towards the (re)optimization of signaling transfer points (STPs) in telecommunication networks. The best performance of an STP is achieved whenever the traffic load is evenly distributed among the internal components. Due to the continuously changing traffic pattern, the load of the components has to … Read more

Two properties of condition numbers for convex programs via implicitly defined barrier functions

We study two issues on condition numbers for convex programs: one has to do with the growth of the condition numbers of the linear equations arising in interior-point algorithms; the other deals with solving conic systems and estimating their distance to infeasibility. These two issues share a common ground: the key tool for their development … Read more

Generating Convex Polynomial Inequalities for Mixed 0-1 Programs

We develop a method for generating valid convex polynomial inequalities for mixed 0-1 convex programs. We also show how these inequalities can be generated in the linear case by defining cut generation problems using a projection cone. The basic results for quadratic inequalities are extended to generate convex polynomial inequalities. ArticleDownload View PDF

Improved linear programming bounds for antipodal spherical codes

Let $S\subset[-1,1)$. A finite set $C=\{x_i\}_{i=1}^M\subset\Re^n$ is called a {\em spherical S-code} if $||x_i||=1$ for each $i$, and $x_i^T x_j\in S$, $i\ne j$. For $S=[-1,.5]$ maximizing $M=|C|$ is commonly referred to as the {\em kissing number} problem. A well-known technique based on harmonic analysis and linear programming can be used to bound $M$. We consider … Read more

Constraint Identification and Algorithm Stabilization for Degenerate Nonlinear Programs

In the vicinity of a solution of a nonlinear programming problem at which both strict complementarity and linear independence of the active constraints may fail to hold, we describe a technique for distinguishing weakly active from strongly active constraints. We show that this information can be used to modify the sequential quadratic programming algorithm so … Read more

Slice Models in General Purpose Modeling Systems

Slice models are collections of mathematical programs with the same structure but different data. Examples of slice models appear in Data Envelopment Analysis, where they are used to evaluate efficiency, and cross-validation, where they are used to measure generalization ability. Because they involve multiple programs, slice models tend to be data-intensive and time consuming to … Read more

On implementing a primal-dual interior-point method for conic quadratic optimization

Conic quadratic optimization is the problem of minimizing a linear function subject to the intersection of an affine set and the product of quadratic cones. The problem is a convex optimization problem and has numerous applications in engineering, economics, and other areas of science. Indeed, linear and convex quadratic optimization is a special case. Conic … Read more

A Family of Facets for the p-Median Polytope

We present a nontrivial family of facet-defining inequalities for the p-median polytope. We incorporate the inequalities in a branch-and-cut scheme, and we report computational results that demonstrate their effectiveness. CitationDepartment of Industrial Engineering, State University of New York at Buffalo, submittedArticleDownload View PDF

A Family of Inequalities for the Generalized Assignment Polytope

We present a family of inequalities that are valid for the generalized assignment polytope. Although the inequalities are not facet-defining in general, they define facets of a polytope of a relaxation. We report computational results on the use of the inequalities in a branch-and-cut scheme that demonstrate their effectiveness. CitationDepartment of Industrial Engineering, State University … Read more