Adaptive robust optimization with discrete uncertainty

In this paper, we study adaptive robust optimization problems with discrete uncertainty. We first show that an adaptive robust counterpart of the multiple knapsack problem includes $\Sigma_2^P$-hard problems. Then, we theoretically prove the validity of a non-trivial reformulation of this class of problems which can be solved by an enumerative algorithm akin to a Branch-and-Benders-cut … Read more

European Gas Infrastructure Expansion Planning: An Adaptive Robust Optimization Approach

The European natural gas market is undergoing fundamental changes, fostering uncertainty regarding both supply and demand. This uncertainty is concentrated in the value of strategic infrastructure investments, e.g., projects of common interest supported by European Union public funds, to safeguard security of supply. This paper addresses this matter by suggesting an adaptive robust optimization framework … Read more

Pareto Adaptive Robust Optimality via a Fourier-Motzkin Elimination Lens

We formalize the concept of Pareto Adaptive Robust Optimality (PARO) for linear Adaptive Robust Optimization (ARO) problems. A worst-case optimal solution pair of here-and-now decisions and wait-and-see decisions is PARO if it cannot be Pareto dominated by another solution, i.e., there does not exist another such pair that performs at least as good in all … Read more

Adaptive Robust Optimization with Dynamic Uncertainty Sets for Multi-Period Economic Dispatch under Significant Wind

The exceptional benefits of wind power as an environmentally responsible renewable energy resource have led to an increasing penetration of wind energy in today’s power systems. This trend has started to reshape the paradigms of power system operations, as dealing with uncertainty caused by the highly intermittent and uncertain wind power becomes a significant issue. … Read more