An exact approach to the problem of extracting an embedded network matrix

We study the problem of detecting a maximum embedded network submatrix in a {-1,0,+1}-matrix. Our aim is to solve the problem to optimality. We introduce a 0-1 integer linear formulation for this problem based on its representation over a signed graph. A polyhedral study is presented and a branch-and-cut algorithm is described for finding an … Read more

Experiments with Branching using General Disjunctions

Branching is an important component of the branch-and-cut algorithm for solving mixed integer linear programs. Most solvers branch by imposing a disjunction of the form“$x_i \leq k \vee x_i \geq k+1$” for some integer $k$ and some integer-constrained variable $x_i$. A generalization of this branching scheme is to branch by imposing a more general disjunction … Read more

A Branch-and-cut Algorithm for Integer Bilevel Linear Programs

We describe a rudimentary branch-and-cut algorithm for solving integer bilevel linear programs that extends existing techniques for standard integer linear programs to this very challenging computational setting. The algorithm improves on the branch-and-bound algorithm of Moore and Bard in that it uses cutting plane techniques to produce improved bounds, does not require specialized branching strategies, … Read more

Exact and heuristic solutions of the global supply chain problem with transfer pricing

We examine the example of a multinational corporation that attempts to maximize its global after tax profits by determining the flow of goods, the transfer prices, and the transportation cost allocation between each of its subsidiaries. Vidal and Goetschalckx (2001) proposed a bilinear model of this problem and solved it by an Alternate heuristic. We … Read more

A Hybrid Relax-and-Cut/Branch-and-Cut Algorithm for the Degree-Constrained Minimum Spanning Tree Problem

A new exact solution algorithm is proposed for the Degree-Constrained Minimum Spanning Tree Problem. The algorithm involves two combined phases. The first one contains a Lagrangian Relax-and-Cut procedure while the second implements a Branch-and-Cut algorithm. Both phases rely on a standard formulation for the problem, reinforced with Blossom Inequalities. An important feature of the proposed … Read more

An exact algorithm for solving the ring star problem

This paper deals with the ring star problem that consists in designing a ring that pass through a central depot, and then assigning each non visited customer to a node of the ring. The objective is to minimize the total routing and assignment costs. A new chain based formulation is proposed. Valid inequalities are proposed … Read more

An improved Benders decomposition applied to a multi-layer network design problem

Benders decomposition has been widely used for solving network design problems. In this paper, we use a branch-and-cut algorithm to improve the separation procedure of Gabrel et al. and Knippel et al. for capacitated network design. We detail experiments on bilayer networks, comparing with Knippel’s previous results. CitationTechnical Reports of the ULB Computer Science Department, … Read more

Solving the Prize-collecting Rural Postman Problem

In this work we present an algorithm for solving the Prize-collecting Rural Postman Problem. This problem was recently defined and is a generalization of other arc routing problems like, for instance, the Rural Postman Problem. The main difference is that there are no required edges. Instead, there is a profit function on the edges that … Read more

A Branch-and-Cut Algorithm based on Semidefinite Programming for the Minimum k-Partition Problem

The minimum k-partition (MkP) problem is the problem of partitioning the set of vertices of a graph into k disjoint subsets so as to minimize the total weight of the edges joining vertices in the same partition. The main contribution of this paper is the design and implementation of a branch-and-cut algorithm based on semidefinite … Read more

Separation Algorithms for 0-1 Knapsack Polytopes

Valid inequalities for 0-1 knapsack polytopes often prove useful when tackling hard 0-1 Linear Programming problems. To use such inequalities effectively, one needs separation algorithms for them, i.e., routines for detecting when they are violated. We show that the separation problems for the so-called extended cover and weight inequalities can be solved exactly in O(nb) … Read more