A Proximal Gradient Method for Multi-objective Optimization Problems Using Bregman Functions

In this paper, a globally convergent proximal gradient method is developed for convex multi-objective optimization problems using Bregman distance. The proposed method is free from any kind of a priori chosen parameters or ordering information of objective functions. At every iteration of the proposed method, a subproblem is solved to find a descent direction. This … Read more

Proximal Point Methods for Functions Involving Lojasiewicz, Quasiconvex and Convex Properties on Hadamard Manifolds

This paper extends the full convergence of the proximal point method with Riemannian, Semi-Bregman and Bregman distances to solve minimization problems on Hadamard manifolds. For the unconstrained problem, under the assumptions that the optimal set is nonempty and the objective function is continuous and either quasiconvex or satisfies a generalized Lojasiewicz property, we prove the … Read more

Block-Iterative Algorithms with Underrelaxed Bregman Projections

The notion of relaxation is well understood for orthogonal projections onto convex sets. For general Bregman projections it was considered only for hyperplanes and the question of how to relax Bregman projections onto convex sets that are not linear (i.e., not hyperplanes or half-spaces) has remained open. A definition of underrelaxation of Bregman projections onto … Read more