From Optimization to Control: Quasi Policy Iteration

Recent control algorithms for Markov decision processes (MDPs) have been designed using an implicit analogy with well-established optimization algorithms. In this paper, we make this analogy explicit across four problem classes with a unified solution characterization. This novel framework, in turn, allows for a systematic transformation of algorithms from one domain to the other. In … Read more

Second-order Partial Outer Convexification for Switched Dynamical Systems

Mixed-integer optimal control problems arise in many practical applications combining nonlinear, dynamic, and combinatorial features. To cope with the resulting complexity, several approaches have been suggested in the past. Some of them rely on solving a reformulated and relaxed control problem, referred to as partial outer convexification. Inspired by an efficient algorithm for switching time … Read more

An Asynchronous Proximal Bundle Method

We develop a fully asynchronous proximal bundle method for solving non-smooth, convex optimization problems. The algorithm can be used as a drop-in replacement for classic bundle methods, i.e., the function must be given by a first-order oracle for computing function values and subgradients. The algorithm allows for an arbitrary number of master problem processes computing … Read more

Inexact Newton-Type Optimization with Iterated Sensitivities

This paper presents and analyzes an Inexact Newton-type optimization method based on Iterated Sensitivities (INIS). A particular class of Nonlinear Programming (NLP) problems is considered, where a subset of the variables is defined by nonlinear equality constraints. The proposed algorithm considers an arbitrary approximation for the Jacobian of these constraints. Unlike other inexact Newton methods, … Read more

Lifted Collocation Integrators for Direct Optimal Control in ACADO Toolkit

This paper presents a class of efficient Newton-type algorithms for solving the nonlinear programs (NLPs) arising from applying a direct collocation approach to continuous time optimal control. The idea is based on an implicit lifting technique including a condensing and expansion step, such that the structure of each subproblem corresponds to that of the multiple … Read more

Embedded Online Optimization for Model Predictive Control at Megahertz Rates

Faster, cheaper, and more power efficient optimization solvers than those currently offered by general-purpose solutions are required for extending the use of model predictive control (MPC) to resource-constrained embedded platforms. We propose several custom computational architectures for different first-order optimization methods that can handle linear-quadratic MPC problems with input, input-rate, and soft state constraints. We … Read more

Nonlinear-Programming Reformulation of the Order-Value Optimization problem

Order-value optimization (OVO) is a generalization of the minimax problem motivated by decision-making problems under uncertainty and by robust estimation. New optimality conditions for this nonsmooth optimization problem are derived. An equivalent mathematical programming problem with equilibrium constraints is deduced. The relation between OVO and this nonlinear-programming reformulation is studied. Particular attention is given to … Read more