Regularizing Bilevel Nonlinear Programs by Lifting

This paper considers a bilevel nonlinear program (NLP) whose lower-level problem satisfies a linear independence constraint qualification (LICQ) and a strong second-order condition (SSOC). One would expect the resulting mathematical program with complementarity constraints (MPCC), whose constraints are the first-order optimality conditions of the lower-level NLP, to satisfy an MPEC-LICQ. We provide an example which … Read more

On the control of an evolutionary equilibrium in micromagnetics

We formulate an optimal control problem of magnetization in a ferromagnet as a mathematical program with evolutionary equilibrium constraints. The evolutionary nature of the equilibrium is due to the hysteresis behavior of the respective magnetization process. To solve the problem numerically, we adapted the implicit programming technique. The adjoint equations, needed to compute the subgradients … Read more

An interior-point method for MPECs based on strictly feasible relaxations

An interior-point method for solving mathematical programs with equilibrium constraints (MPECs) is proposed. At each iteration of the algorithm, a single primal-dual step is computed from each subproblem of a sequence. Each subproblem is defined as a relaxation of the MPEC with a nonempty strictly feasible region. In contrast to previous approaches, the proposed relaxation … Read more

Numerical Issues and Influences in the Design of Algebraic Modeling Languages for Optimization

This paper draws from our experience in developing the AMPL modeling language, to show where numerical issues have been crucial to modeling language design and where modeling language advances have strongly influenced the design of solvers. Citation Proceedings of the 20th Biennial Conference on Numerical Analysis, Dundee, Scotland, D.F. Griffiths and G.A. Watson, eds., University … Read more

A robust SQP method for mathematical programs with linear complementarity constraints

The relationship between the mathematical program with linear complementarity constraints (MPCC) and its inequality relaxation is studied. A new sequential quadratic programming (SQP) method is presented for solving the MPCC based on this relationship. A certain SQP technique is introduced to deal with the possible infeasibility of quadratic programming subproblems. Global convergence results are derived … Read more

Optimization problems with equilibrium constraints and their numerical solution

We consider a class of optimization problems with a generalized equation among the constraints. This class covers several problem types like MPEC (Mathematical Programs with Equilibrium Constraints) and MPCC (Mathematical Programs with Complementarity Constraints). We briefly review techniques used for numerical solution of these problems: penalty methods, nonlinear programming (NLP) techniques and Implicit Programming approach … Read more

Extension of Quasi-Newton Methods to Mathematical Programs with Complementarity Constraints

Quasi-Newton methods in conjunction with the piecewise sequential quadratic programming are investigated for solving mathematical programming with equilibrium constraints, in particular for problems with complementarity constraints. Local convergence as well as superlinear convergence of these quasi-Newton methods can be established under suitable assumptions. In particular, several well-known quasi-Newton methods such as BFGS and DFP are … Read more